
1

BLOCK

There are two kinds of BLOCK statements: Simple and Guarded.

Simple BLOCK

The BLOCK statement, in its simple form, represents only a way of locally
partitioning the code.

It allows a set of concurrent statements to be clustered into a BLOCK, with the
purpose of turning the overall code more readable and more Manageable.

Its syntax is shown below.

label: BLOCK
 [declarative part]
BEGIN
 (concurrent statements)
END BLOCK label;

Therefore, the overall aspect of a "blocked" code is the following:

ARCHITECTURE example ...
BEGIN
...
block1: BLOCK
 BEGIN
 ...
 END BLOCK block1
 ...
block2: BLOCK
 BEGIN
 ...
 END BLOCK block2;
 ...
END example;

2

Example:

b1: BLOCK
 SIGNAL a: STD_LOGIC;

 BEGIN
 a <= input_sig WHEN ena='1' ELSE 'Z';
 END BLOCK b1;

A BLOCK (simple or guarded) can be nested inside another BLOCK. The
corresponding syntax is shown below.

label1: BLOCK

 [declarative part of top block]

 BEGIN

 [concurrent statements of top block]

 label2: BLOCK
 [declarative part nested block]
 BEGIN
 (concurrent statements of nested block)
 END BLOCK label2;

[more concurrent statements of top block]

END BLOCK label1;

3

Guarded BLOCK

A guarded BLOCK is a special kind of BLOCK, which includes an additional
expression,
called guard expression. A guarded statement in a guarded BLOCK is executed
only when the guard expression is TRUE.

Guarded BLOCK:

 label: BLOCK (guard expression)
 [declarative part]
 BEGIN
 (concurrent guarded and unguarded statements)
 END BLOCK label;

Example: Latch Implemented with a Guarded BLOCK

The example presented below implements a transparent latch.

In it, clk='1' is the guard expression, while q<=GUARDED d is a guarded
statement. Therefore, q<=d will only occur if clk='1'.

1 -------------------------------
2 LIBRARY ieee;
3 USE ieee.std_logic_1164.all;
4 -------------------------------
5 ENTITY latch IS
6 PORT (d, clk: IN STD_LOGIC;
7 q: OUT STD_LOGIC);
8 END latch;
9 -------------------------------
10 ARCHITECTURE latch OF latch IS

11 BEGIN
12 b1: BLOCK (clk='1')
13 BEGIN
14 q <= GUARDED d;
15 END BLOCK b1;
16 END latch;
17 -------------------------------

4

Example: DFF Implemented with a Guarded BLOCK

In the code below

clk'EVENT AND clk='1' (line 12) is the guard expression,

while q <= GUARDED '0' WHEN rst='1' is a guarded statement.

Therefore, q<='0' will occur when the guard expression is true and rst is '1'.

1 -------------------------------
2 LIBRARY ieee;
3 USE ieee.std_logic_1164.all;
4 -------------------------------
5 ENTITY dff IS
6 PORT (d, clk, rst: IN STD_LOGIC;
7 q: OUT STD_LOGIC);
8 END dff;
9 -------------------------------
10 ARCHITECTURE dff OF dff IS
11 BEGIN
12 b1: BLOCK (clk'EVENT AND clk='1')
13 BEGIN
14 q <= GUARDED '0' WHEN rst='1' ELSE d;
15 END BLOCK b1;
16 END dff;
17 ------------------------------

Sequential Code

Concurrent code is intended only for the design of combinational circuits, while
sequential code can be used indistinctly to design both sequential and
combinational circuits.

The statements intended only for completely concurrent code, referred to as
concurrent statements, are WHEN, SELECT, and GENERATE, while those for
sequential code, referred to as sequential statements, are IF, WAIT, LOOP, and
CASE.

5

In VHDL, there are three kinds of sequential code: PROCESS, FUNCTION and
PROCEDURE (the last two are called subprograms). PROCESS is intended for the
architecture body (main code, for example)

Main properties of SIGNAL:

A signal can only be declared outside sequential code (though it can be used there).

A signal is not updated immediately (when a value is assigned to a signal inside
sequential code, the new value will only be ready after the conclusion of that run).

A signal assignment, when made at the transition of another signal, will cause the
inference of registers (given that the signal affects the design entity).

Only a single assignment is allowed to a signal in the whole code (even though the
compiler might accept multiple assignments to the same signal in PROCESS or
subprograms, only the last one will be effective, so again it is just one assignment).

Main properties of VARIABLE:

A variable can only be declared and used inside a PROCESS or subprogram

(if it is a shared variable, then the declaration is made elsewhere, but it still should
only be modified inside a sequential unit).

A variable is updated immediately (hence the new value can be used/tested in the
next line of code).

A variable assignment, when made at the transition of another signal, will cause the
inference (cikarim, sonuc) of registers (assuming that the variable’s value affects a
signal, which in turn affects the design entity).

 Multiple assignments are fine.

6

PROCESS:

A PROCESS is a sequential section of VHDL code. It is characterized by the
presence of IF, WAIT, CASE, or LOOP, and by a sensitivity list. A PROCESS
must be installed in the main code, and is executed every time a signal in the
sensitivity list changes (or the condition related to WAIT is fulfilled).

Its syntax is shown below.

[label:] PROCESS (sensitivity list)

[VARIABLE name type [range] [:= initial_value;]]
 BEGIN
 (sequential code)
 END PROCESS [label];

VARIABLES are optional. If used, they must be declared in the declarative part
of the PROCESS (before the word BEGIN, as indicated in the syntax above). The
initial value is not synthesizable, being only taken into consideration in simulations.
The use of a label is also optional. Its purpose is to improve code readability. The
label can be any word, except VHDL reserved words.

Example

The (partial) process below is executed whenever clk or rst changes. It contains
three variable declarations (a, b, c), the first two specified as INTEGER, the last
one as BIT_VECTOR. Only for c a default value (optional) was entered.

PROCESS (clk, rst)

 VARIABLE a, b: INTEGER RANGE 0 TO 255;
 VARIABLE c: BIT_VECTOR(7 DOWNTO 0) := "00001111";

BEGIN
...
END PROCESS;

The IF

IF, WA
can onl

A simp

[label:]

a
ELSIF

a
.

ELSE
a

END IF

Examp

IF (x<y

t
ELSIF

t
ELSE

t
END IF

DFFs w

Whene

Whene
occurs

F Stateme

AIT, LOO
ly be used

plified syn

] IF condit
assignmen
condition

assignmen
...

assignmen
F [label];

ple

y) THEN
temp:= "00
(x=y AND

temp:= "1

temp:=(OT
F;

with Rese

ever rst = '

ever clr is
for the ou

nt

P, and CA
d inside a P

ntax for IF

tions THE
nts;
ns THEN
nts;

nts;

0001111"
D w='0') T
1110000"

THERS =>

et and Cle

1' occurs,

s asserted
utput to be

ASE are th
PROCESS

is shown

EN

;
THEN
;

> '0');

ear

the output

we still
zeroed

7

he stateme
S or subpro

below

t is immed

need to w

ents intend
ogram)

diately zer

wait until

ded for seq

roed, regar

the prope

quential co

rdless of th

er clock t

ode (they

he clock

transition

8

Example:
DFFs with Reset and Clear. Employing the IF statement, write a code that
implements the DFFs

1 ---
2 LIBRARY ieee;
3 USE ieee.std_logic_1164.all;
4 ---
5 ENTITY flipflops IS
6 PORT (d1, d2, clk, rst, clr: IN STD_LOGIC;
7 q1, q2: OUT STD_LOGIC);
8 END ENTITY;
9 ---
10 ARCHITECTURE flipflops OF flipflops IS
11 BEGIN
12 ---DFF with reset---
13 with_reset: PROCESS (clk, rst)
14 BEGIN
15 IF (rst='1') THEN
16 q1 <= '0';
17 ELSIF (clk'EVENT AND clk='1') THEN
18 q1 <= d1;
19 END IF;
20 END PROCESS with_reset;

21 ---DFF with clear:---
22 with_clear: PROCESS (clk)
23 BEGIN
24 IF (clk'EVENT AND clk='1') THEN
25 IF (clr='1') THEN
26 q2 <= '0';
27 ELSE
28 q2 <= d2;
29 END IF;
30 END IF;
31 PROCESS with_clear;
32 END ARCHITECTURE;
33 ---

