Operators and Attributes
Predefined Operators
VHDL provides several kinds of predefined operators:
Assignment operators
Logical operators
Arithmetic operators
Comparison (relational) operators
Shift operators
Concatenation operator
Matching comparison operators
Assignment Operators
Are used to assign values to signals, variables, and constants. They are:

Operator "<=" Used to assign a value to a SIGNAL.

Operator ":=" Used to assign a value to a VARIABLE, CONSTANT, or
GENERIC. Usedalso for establishing initial values.

Operator "=>" Used to assign values to individual vector elements or with
OTHERS.

Example

Three object declarations ?x; y; z? are shown below, followed by several
assignments. Comments follow each assignment.

CONSTANT x: STD_LOGIC_VECTOR(7 DOWNTO 0) :="00010001";

SIGNAL y: STD_LOGIC_VECTOR(1 TO 4);

VARIABLE z: BIT_VECTOR(3 DOWNTO 0);

y(4) <="'1"; --'1' assigned to a signal using "<="

y <="0000"; --"0000" assigned to a signal with "<="

y <= (OTHERS=>'0") --'0" assigned to all elements of y

y <= X(3 DOWNTO 0); --part of x assigned to y

z :="1000"; --"1000" assigned to a variable with ;="
z := (0=>'1", OTHERS=>'0"); --z="0001"

Logical Operators

Used to perform logical operations. The data must be of type BIT, STD_LOGIC,
or STD_ULOGIC (or, obviously, their respective extensions, BIT_ VECTOR,
STD LOGIC _VECTOR, or STD_ULOGIC_VECTOR). The logical operators are:

NOT
AND
OR
NAND
NOR
XOR
XNOR

Notes: The NOT operator has precedence over the others. The XNOR operator was
introduced in VHDL93.

Examples:
y <= NOT a AND b; -- (a'.b)
y <= NOT (a AND b); -- (a.b)’
y <= a NAND b; -- (a.b)’
Arithmetic Operators
The arithmetic operators are:
Addition (+)

Subtraction (-)

Multiplication (*)

Division (/)
Exponentiation (**)

Absolute value (ABS)

Remainder (REM)

Modulo (MOD)

x/y Returns 0 when |x| < |y,

+1 when |y| < |x| < 2]y],

+2 when 2|y| < |x| < 3, etc

with the sign obviously negative when the signs of x and y are different
Examples 3/5=0, -3/5=0, 9/5=1, -9/5=-1, 10/5=2, -10/5=-2, 14/5=2, -14/5=-1
ABS x: Returns the absolute value of x.

Examples ABS 5 =5, ABS -3=3.

x REM y: Returns the remainder of x/y, with the sign of x. Its equation is x REM
y = X — (x/y) y, where both operands are integers.

Examples6 REM3=0,7REM3=1,7REM 3=1,-7TREM 3 =-1, -7 REM
-3=-1.

x MOD vy: Returns the remainder of x/y, with the sign of y. Its equation is x MOD
y = X REM y + ay, where a = 1 when the signs of x and y are different or a = 0
otherwise.

Both operands are integers.

Examples7 MOD 3=1,7 MOD -3=-2,-7 MOD 3=2, -7 MOD -3 =-1.
Comparison Operators

Also called relational operators, the comparison operators are:

Equal to (=

Not equal to (/=)

Less than (<)
Greater than (>)

Less than or equal to (<=)
Greater than or equal to (>=)

Shift Operators
Introduced in VHDL93, shift operators are used for shifting data vectors. They are:

Shift left logic (SLL): Positions on the right are filled with '0's.
Shift right logic (SRL): Positions on the left are filled with '0's.
Shift left arithmetic (SLA): Rightmost bit is replicated on the right.
Shift right arithmetic (SRA): Leftmost bit is replicated on the left.
Rotate left (ROL): Circular shift to the left.

Rotate right (ROR): Circular shift to the right.

Examples

Say that x is a BIT_VECTOR signal with value x = "01001". Then the values
produced by the assignments below are those indicated in the comments
(equivalent expressions, using the concatenation operator, are shown between
parentheses).

y <= x SLL 2; --y<="00100" (y <= x(2 DOWNTO 0) & "00";)

y <= X SLA 2; --y<="00111" (y <= x(2 DOWNTO 0) & x(0) & x(0);)

y <= X SRL 3; --y<="00001" (y <= "000" & x(4 DOWNTO 3);)

y <= X SRA 3; --y<="00001" (y <= x(4) & X(4) & X(4) & x(4 DOWNTO 3);)

y <= x ROL 2; --y<="00101" (y <= x(2 DOWNTO 0) & x(4 DOWNTO 3);)

y <= X SRL -2; --same as "x SLL 2"

Concatenation Operator

Used for grouping objects and values (useful also for shifting data, as shown in the
example above), the concatenation operator’s representation is &.

The synthesizable predefined data types for which the concatenation operator is
intended are BIT_VECTOR, BOOLEAN_VECTOR (VHDL 2008),
INTEGER_VECTOR (VHDL 2008), STD_(U)LOGIC_VECTOR, (UN)SIGNED,
and STRING.

Example

Four VHDL objects (v, X, y, z) are declared below, then several assignments are
made utilizing the concatenation operator (&). The use of parentheses is optional.
CONSTANT v: BIT =1},

CONSTANT x: STD_LOGIC :='Z;

SIGNAL y: BIT_VECTOR(1 TO 4);

SIGNAL z: STD_LOGIC_VECTOR(7 DOWNTO 0);

y <= (v & "000"); --result: "1000"

y <=v & "000"; --same as above (parentheses are optional)

z2<=(X&x &"11111" & X); --result: "ZZ711111Z7"

z<=(0'&"011111" & x); --result: "0011111Z"

Example

Consider the same constants and signals above. Below is a series of individualbit
assignments using the keyword OTHERS and comma instead of the regular
concatenation operator. Observe the nominal and positional mapping options. Here,
parentheses are required.

y <= (OTHERS=>'0"); --result: "0000"

y <= (4=>'1', OTHERS=>'0"); --result: "0001" (nominal mapping)

y <= ('1l', OTHERS=>'0"); --result: "1000" (positional mapping)

y <= (4=>'1", 2=>v, OTHERS=>'0"); --result: "0101" (nominal mapping)
z <= (OTHERS=>'Z"); --result: "2Z227272777"

z <= (4=>'1', OTHERS=>'0"); --result: "00010000" (nominal mapping)
z <= (4=>x, OTHERS=>'0"); --result: *000Z0000" (nominal mapping)

z <= ("1, OTHERS=>'0"); --result: *10000000" (posit. mapping)

Matching Comparison Operators

Matching equality operator (?=)

Matching inequality operator (?/=)

Matching less than operator (7<)

Matching greater than operator (?>)

Matching less than or equal to operator (?<=)
Matching greater than or equal to operator (?>=)

5

The purpose of this operator is to allow the comparison of logic values instead of
enumerated symbols in STD_ULOGIC based data.

For example, "IF 'H' ='1". . ." returns FALSE because these symbols are different,
while "IF 'H' ?="1". . ." returns '1' because both 'H' and '1' are interpreted as logic
value '1".

Other Operators

Other operators introduced in VHDL 2008 are:

MINIMUM and MAXIMUM operators: Return the smallest or largest value
in the given set. For example, "MAXIMUM(O0, 55, 23)" returns 55. These operators
were defined for all VHDL types.

Condition operator ("??"): Converts a BIT or STD_(U)LOGIC value into a
BOOLEAN value. For example, "?? a AND b" returns TRUE when a AND b =1
or FALSE otherwise.

TO_STRING: Converts a value of type BIT, BIT_VECTOR,
STD_LOGIC_VECTOR, and so on into STRING. For the types BIT_VECTOR
and STD_LOGIC VECTOR, there are also the options TO OSTRING and
TO_HSTRING, which produce an octal or hexadecimal string, respectively.

Examples
TO_STRING(58) = "58"

TO_STRING(B"1110000) = "11110000”
TO_HSTRING(B"11110000) = "F0"

Operators Summary

Operator type Predefined operators Supported synthesizable predefined data types (*)
Logical NOT, AND, NAND, OR, NOR, | BIT, BIT_VECTOR, BOOLEAN, BOOLEAN_VECTOR'”,
XOR, XNOR STD_(U)LOGIC, STD_LOGIC_(U)VECTOR, (UN)SIGNED?,

UFIXED'", SFIXED'" FLOAT™

Arithmetic +,-,* [** ABS, REM, MOD | INTEGER, NATURAL, POSITIVE, STD_(U)LOGIC_VECTOR""
(UN)SIGNED"™, UFIXED'”, SFIXED'", FLOAT'"

Comparison =, /=, >, <, »=, <= BIT, BIT_VECTOR, BOOLEAN, BOOLEAN_VECTOR'", INTEGER,
NATURAL, POSITIVE, INTEGER_VECTOR'", CHARACTER,
STRING, STD_(U)LOGIC_ VECTOR™, (UN)SIGNED", UFIXED'",
SFIXED'", FLOAT"

Shift SLL, SRL, SLA, SRA, ROL, BIT_VECTOR, BOOLEAN_VECTOR'", STD_LOGIC_(U)VECTOR",

ROR (UN)SIGNED', UFIXED'", SFIXED'"

Concatenation & (*," and OTHERS t00) BIT_VECTOR, BOOLEAN_VECTOR'", INTEGER_VECTOR'",
STRING, STD_(U)LOGIC_VECTOR, (UN)SIGNED"

Matching 7=, 7=, 7>, 7<, 7>=, 7<= BIT, BIT_VECTOR'’, BOOLEAN_VECTOR'”, STD, OGIC,

comparison " sm {U)LOGIC VECTOR, (UN)SIGNED®, UF " SFIXED",

Condition " 2? arr. STD_(U)LOGIC

Min/Max and MINIMUM, MAXIMUM, Nearly all VHDL types in standard packages (see appendices)

String conversion "' | TO_STRING, etc.

(*) Note: Some types support only a partial set of operators (3) Requires package std_logic_(un)signed or numeric_std_unsigned

(1) Introduced or proposed in VHDL 2008 (4) Requires package numeric_std or std_logic_arith

(2) With package numeric_std

Data Attributes

The pre-defined, synthesizable data attributes are the following:

d'LOW: Returns lower array index
d'HIGH: Returns upper array index

d'LEFT: Returns leftmost array index

d'RIGHT: Returns rightmost array index

d'LENGTH: Returns vector size

d'RANGE: Returns vector range

d'REVERSE_RANGE: Returns vector range in reverse order

Example:

Consider the following signal:
SIGNAL d: STD_LOGIC_VECTOR (7 DOWNTO 0);

Then:
d'LOW=0, d'HIGH=7, d'LEFT=7, dRIGHT=0, d'LENGTH=8,
d'RANGE=(7 downto 0), 'REVERSE_RANGE=(0 to 7).

Example:
Consider the following signal:

SIGNAL x: STD_LOGIC_VECTOR (0 TO 7);

Then all four LOOP statements below are synthesizable and equivalent.

FOR 1IN RANGE (0 TO 7) LOORP ...

FOR i IN X¥’RANGE LOORP ...

FOR i IN RANGE (X'LOW TO x'HIGH) LOORP ...

FOR i IN RANGE (0 TO X'LENGTH-1) LOORP ...

If the signal is of enumerated type, then:

d'VAL(pos): Returns value in the position specified

d'POS(value): Returns position of the value specified

d'LEFTOF(value): Returns value in the position to the left of the value specified

d'VAL(row, column): Returns value in the position specified,; etc.

Signal Attributes

Let us consider a signal s. Then:

S’EVENT: Returns true when an event occurs on s

s’STABLE: Returns true if no event has occurred on s

S’ACTIVE: Returns true if s = ‘1’

S’QUIET 3time4: Returns true if no event has occurred during the time specified
S’LAST_EVENT: Returns the time elapsed since last event

S’LAST_ACTIVE: Returns the time elapsed since last s = ‘1’

s’LAST_VALUE: Returns the value of s before the last event; etc.

Though most signal attributes are for simulation purposes only, the first two in the
list above are synthesizable, S’EVENT being the most often used of them all.
Example: All four assignments shown below are synthesizable and equivalent.
They return TRUE when an event (a change) occurs on clk, AND if such event is
upward (in other words, when a rising edge occurs on clk).

IF (clkEVENT AND clk="1")... -- EVENT attribute used with IF

IF (NOT clk'STABLE AND clk="1")... -- STABLE attribute used with IF

WAIT UNTIL (clkEVENT AND clk="1"); -- EVENT attribute used with WAIT

IF RISING_EDGE(clk)... -- call to a function

User-Defined Attributes

We saw above attributes of the type HIGH, RANGE, EVENT, etc. However,
VHDL also allows the construction of user defined attributes.

To employ a user-defined attribute, it must be declared and specified. The syntax is
the following:

Attribute declaration:

ATTRIBUTE attribute_name: attribute_type;

Attribute specification:

ATTRIBUTE attribute_name OF target_name: class IS value;

where:

attribute_type: any data type (BIT, INTEGER, STD_LOGIC_VECTOR, etc.)
class: TYPE, SIGNAL, FUNCTION, etc.

value: '0', 27,00 11 10 01", etc.

Example:

ATTRIBUTE number_of inputs: INTEGER; -- declaration

ATTRIBUTE number_of _inputs OF nand3: SIGNAL IS 3; -- specification

inputs <= nand3'number_of pins; -- attribute call, returns 3

Example:

Enumerated encoding.

A popular user-defined attribute, which is provided by synthesis tool vendors, is the
enum_encoding attribute. By default, enumerated data types are encoded
sequentially.

Thus, if we consider the enumerated data type color shown below:

TYPE color IS (red, green, blue, white);

its states will be encoded as red = "00", green = "0"’, blue ="10", and white ="11".

10

Enum_encoding allows the default encoding (sequential) to be changed. Thus
the following encoding scheme could be employed, for example:

ATTRIBUTE enum_encoding OF color: TYPE IS "11 00 10 01";

GENERIC

As the name suggests, GENERIC is a way of specifying a generic parameter (that
Is, a static parameter that can be easily modified and adapted to different

applications).

The purpose is to confer the code more flexibility and reusability.
A GENERIC statement, when employed, must be declared in the ENTITY.

Its syntax is shown below.
GENERIC (parameter_name : parameter_type := parameter_value);
Example:

The GENERIC statement below specifies a parameter called n, of type
INTEGER, whose default value is 8.

Therefore, whenever n is found in the ENTITY itself or in the ARCHITECTURE
(one or more) that follows, its value will be assumed to be 8.

ENTITY my_entity IS

GENERIC (n: INTEGER := 8);

PORT (...);

END my_entity;

ARCHITECTURE my_architecture OF my_entity IS

END my_architecture:

More than one GENERIC parameter can be specified in an ENTITY.

For example:
GENERIC (n: INTEGER := 8; vector: BIT_VECTOR :="00001111");

11

Example: Generic Parity Detector

The parity detector circuit must provide output = '0' when the number of '1's in the
input vector is even, or output ='0" otherwise.

PARITY

input (n:0) we—p) e TOR

— output

2 ENTITY parity_det IS

3 GENERIC (n: INTEGER :=7);

4 PORT (input: IN BIT_VECTOR (n DOWNTO 0);
5 output: OUT BIT);

6 END parity_det;

J m e e s

8 ARCHITECTURE parity OF parity_det IS
9 BEGIN

10 PROCESS (input)

11 VARIABLE temp: BIT;

12 BEGIN

13 temp :="'0"

14 FOR i IN inputRANGE LOOP
151 emp := temp XOR input(i);
16 END LOOP;

17 output <= temp;

18 END PROCESS;
19 END parity;
20 -

12

Solution-2

2 ENTITY parity_gen IS
3 GENERIC (n: INTEGER :=7);
4 PORT (input: IN BIT_VECTOR (n-1 DOWNTO 0);

5 output: OUT BIT_VECTOR (n DOWNTO 0));
6 END parity_gen;
2

8 ARCHITECTURE parity OF parity_gen IS

9 BEGIN

10 PROCESS (input)

11 VARIABLE templ: BIT;

12 VARIABLE temp2: BIT_VECTOR (outputRANGE);
13 BEGIN

14 templ :="'0"

15 FOR i IN inputRANGE LOOP

16 templ := templ XOR input(i);

17 temp2(i) := input(i);

18 END LOOP;

19 temp2(output'HIGH) := templ;

20 output <= temp2;

21 END PROCESS;

22 END parity;

23 o

13

Example: Generic Decoder

L—» X(n-1) ena sel X
sel (m-1:0) =P - - — —
mxn > “)
DECODER : 00 1110
—» X(1) 01 1101
ena —» 10 1011
—» X((
a2 11 0111
[—— ——

2 LIBRARY ieee;
3 USE ieee.std_logic_1164.all;

5 ENTITY decoder IS

6
7
8

PORT (ena: IN STD_LOGIC;

sel : IN STD_LOGIC_VECTOR (2 DOWNTO 0);
x : OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

9 END decoder;

12
13
14
15

16
17
18
19

20
21
22
23
24
25
26

27
28

29
30

11 ARCHITECTURE generic_decoder OF decoder IS

BEGIN

PROCESS (ena, sel)
VARIABLE templ : STD_LOGIC_VECTOR (XHIGH DOWNTO 0);
VARIABLE temp2 : INTEGER RANGE 0 TO x'HIGH,;

BEGIN
templ := (OTHERS =>'1");
temp2 :=0;

IF (ena='1") THEN

FOR i IN sel'RANGE LOOP -- sel range is 2 downto 0
IF (sel(i)="1") THEN -- Bin-to-Integer conversion
temp2:=2*temp2+1;
ELSE
= 2*temp?2,;
END IF;
END LOOP;

templ(temp2):='0';
END IF;

X <=templ,;
END PROCESS;

31 END generic_decoder;

32

14

Summary:

Attributes.

Application Attributes Return value

For regular DATA d'LOW Lower array index
d'HIGH Upper armray index
d'LEFT Leftmost array index
d'RIGHT Rightmost array index
d'LENGTH Vector size
d'RANGE Vector range
d'REVERSE_RANGE Reverse vector range

For enumerated d'VAL(pos)* Value in the position specified

DATA d'POS(value)® Position of the value specified
d'LEFTOF(value)* Value in the position to the left of the value specified
d'VA L(row, column)* Value in the position specified

For a SIGNAL SEVENT True when an event occurs on s
s STABLE True if no event has occurred on s
SACTIVE* True if s is high

15

