
1

Operators and Attributes

Predefined Operators

VHDL provides several kinds of predefined operators:

 Assignment operators
 Logical operators
 Arithmetic operators
 Comparison (relational) operators
 Shift operators
 Concatenation operator
 Matching comparison operators

Assignment Operators

Are used to assign values to signals, variables, and constants. They are:

 Operator "<=" Used to assign a value to a SIGNAL.

 Operator ":=" Used to assign a value to a VARIABLE, CONSTANT, or
 GENERIC. Used also for establishing initial values.

 Operator "=>" Used to assign values to individual vector elements or with
 OTHERS.

Example
Three object declarations ?x; y; z? are shown below, followed by several
assignments. Comments follow each assignment.

CONSTANT x: STD_LOGIC_VECTOR(7 DOWNTO 0) := "00010001";
SIGNAL y: STD_LOGIC_VECTOR(1 TO 4);
VARIABLE z: BIT_VECTOR(3 DOWNTO 0);

y(4) <= '1'; --'1' assigned to a signal using "<="

y <= "0000"; --"0000" assigned to a signal with "<="

y <= (OTHERS=>'0') --'0' assigned to all elements of y

2

y <= x(3 DOWNTO 0); --part of x assigned to y

z := "1000"; --"1000" assigned to a variable with ":="

z := (0=>'1', OTHERS=>'0'); --z="0001"

Logical Operators

Used to perform logical operations. The data must be of type BIT, STD_LOGIC,
or STD_ULOGIC (or, obviously, their respective extensions, BIT_VECTOR,
STD_LOGIC_VECTOR, or STD_ULOGIC_VECTOR). The logical operators are:

 NOT
 AND
 OR
 NAND
 NOR
 XOR
 XNOR

Notes: The NOT operator has precedence over the others. The XNOR operator was
introduced in VHDL93.

Examples:

y <= NOT a AND b; -- (a'.b)

y <= NOT (a AND b); -- (a.b)'

y <= a NAND b; -- (a.b)'

Arithmetic Operators

The arithmetic operators are:

 Addition (+)
 Subtraction (-)
 Multiplication (*)
 Division (/)
 Exponentiation (**)

3

 Absolute value (ABS)
 Remainder (REM)
 Modulo (MOD)

/ Returns 0 when | | | |,

1 when | | | | 2| |,

2 when 2| | | | 3, etc

with the sign obviously negative when the signs of x and y are different

Examples 3/5=0, -3/5=0, 9/5=1, -9/5=-1, 10/5=2, -10/5=-2, 14/5=2, -14/5=-1

 ABS x: Returns the absolute value of x.

Examples ABS 5 = 5, ABS -3=3.

x REM y: Returns the remainder of x/y, with the sign of x. Its equation is x REM
y = x – (x/y) y, where both operands are integers.

Examples 6 REM 3 = 0, 7 REM 3 = 1, 7 REM 3 = 1, -7 REM 3 = -1, -7 REM
-3 = -1.

x MOD y: Returns the remainder of x/y, with the sign of y. Its equation is x MOD
y = x REM y + ay, where a = 1 when the signs of x and y are different or a = 0
otherwise.
Both operands are integers.

Examples 7 MOD 3 = 1, 7 MOD -3 = -2, -7 MOD 3 = 2, -7 MOD -3 = -1.

Comparison Operators

Also called relational operators, the comparison operators are:

 Equal to (=
 Not equal to (/=)
 Less than (<)
 Greater than (>)

4

 Less than or equal to (<=)
 Greater than or equal to (>=)

Shift Operators

Introduced in VHDL93, shift operators are used for shifting data vectors. They are:

 Shift left logic (SLL): Positions on the right are filled with '0's.
 Shift right logic (SRL): Positions on the left are filled with '0's.
 Shift left arithmetic (SLA): Rightmost bit is replicated on the right.
 Shift right arithmetic (SRA): Leftmost bit is replicated on the left.
 Rotate left (ROL): Circular shift to the left.
 Rotate right (ROR): Circular shift to the right.

Examples
Say that x is a BIT_VECTOR signal with value x = "01001". Then the values
produced by the assignments below are those indicated in the comments
(equivalent expressions, using the concatenation operator, are shown between
parentheses).

y <= x SLL 2; --y<="00100" (y <= x(2 DOWNTO 0) & "00";)
y <= x SLA 2; --y<="00111" (y <= x(2 DOWNTO 0) & x(0) & x(0);)
y <= x SRL 3; --y<="00001" (y <= "000" & x(4 DOWNTO 3);)
y <= x SRA 3; --y<="00001" (y <= x(4) & x(4) & x(4) & x(4 DOWNTO 3);)
y <= x ROL 2; --y<="00101" (y <= x(2 DOWNTO 0) & x(4 DOWNTO 3);)
y <= x SRL -2; --same as "x SLL 2"

Concatenation Operator

Used for grouping objects and values (useful also for shifting data, as shown in the
example above), the concatenation operator’s representation is &.

The synthesizable predefined data types for which the concatenation operator is
intended are BIT_VECTOR, BOOLEAN_VECTOR (VHDL 2008),
INTEGER_VECTOR (VHDL 2008), STD_(U)LOGIC_VECTOR, (UN)SIGNED,
and STRING.

5

Example
Four VHDL objects (v, x, y, z) are declared below, then several assignments are
made utilizing the concatenation operator (&). The use of parentheses is optional.

CONSTANT v: BIT :='1';
CONSTANT x: STD_LOGIC :='Z';
SIGNAL y: BIT_VECTOR(1 TO 4);
SIGNAL z: STD_LOGIC_VECTOR(7 DOWNTO 0);
y <= (v & "000"); --result: "1000"
y <= v & "000"; --same as above (parentheses are optional)
z <= (x & x & "11111" & x); --result: "ZZ11111Z"
z <= ('0' & "011111" & x); --result: "0011111Z"

Example

Consider the same constants and signals above. Below is a series of individualbit
assignments using the keyword OTHERS and comma instead of the regular
concatenation operator. Observe the nominal and positional mapping options. Here,
parentheses are required.

y <= (OTHERS=>'0'); --result: "0000"
y <= (4=>'1', OTHERS=>'0'); --result: "0001" (nominal mapping)
y <= ('1', OTHERS=>'0'); --result: "1000" (positional mapping)
y <= (4=>'1', 2=>v, OTHERS=>'0'); --result: "0101" (nominal mapping)
z <= (OTHERS=>'Z'); --result: "ZZZZZZZZ"
z <= (4=>'1', OTHERS=>'0'); --result: "00010000" (nominal mapping)
z <= (4=>x, OTHERS=>'0'); --result: "000Z0000" (nominal mapping)
z <= ('1', OTHERS=>'0'); --result: "10000000" (posit. mapping)

Matching Comparison Operators

 Matching equality operator (?=)
 Matching inequality operator (?/=)
 Matching less than operator (?<)
 Matching greater than operator (?>)
 Matching less than or equal to operator (?<=)
 Matching greater than or equal to operator (?>=)

6

The purpose of this operator is to allow the comparison of logic values instead of
enumerated symbols in STD_ULOGIC based data.

For example, "IF 'H' = '1' . . ." returns FALSE because these symbols are different,
while "IF 'H' ?= '1' . . ." returns '1' because both 'H' and '1' are interpreted as logic
value '1'.

Other Operators

Other operators introduced in VHDL 2008 are:

 MINIMUM and MAXIMUM operators: Return the smallest or largest value
in the given set. For example, "MAXIMUM(0, 55, 23)" returns 55. These operators
were defined for all VHDL types.

 Condition operator ("??"): Converts a BIT or STD_(U)LOGIC value into a
BOOLEAN value. For example, "?? a AND b" returns TRUE when a AND b = '1'
or FALSE otherwise.

 TO_STRING: Converts a value of type BIT, BIT_VECTOR,
STD_LOGIC_VECTOR, and so on into STRING. For the types BIT_VECTOR
and STD_LOGIC_VECTOR, there are also the options TO_OSTRING and
TO_HSTRING, which produce an octal or hexadecimal string, respectively.

Examples

TO_STRING(58) = "58"
TO_STRING(B"1110000) = "11110000”
TO_HSTRING(B"11110000) = "F0"

Opera

Data A

The pre

 d'LOW

 d'HIGH

 d'LEFT

 d'RIGH

 d'LEN

 d'RAN

 d'REV

tors Summ

Attributes

e-defined,

W: Returns

H: Return

T: Returns

HT: Retur

NGTH: Ret

NGE: Retu

VERSE_RA

mary

s

 synthesiz

s lower arr

ns upper ar

s leftmost

rns rightm

turns vecto

urns vector

ANGE: R

zable data

ray index

rray index

array inde

most array i

or size

r range

eturns vec

7

attributes

ex

index

ctor range

are the fol

in reverse

llowing:

e order

8

Example:

Consider the following signal:
SIGNAL d : STD_LOGIC_VECTOR (7 DOWNTO 0);

Then:

d'LOW=0, d'HIGH=7, d'LEFT=7, d'RIGHT=0, d'LENGTH=8,

d'RANGE=(7 downto 0), d'REVERSE_RANGE=(0 to 7).

Example:
Consider the following signal:

SIGNAL x: STD_LOGIC_VECTOR (0 TO 7);

Then all four LOOP statements below are synthesizable and equivalent.

FOR i IN RANGE (0 TO 7) LOOP ...

FOR i IN x'RANGE LOOP ...

FOR i IN RANGE (x'LOW TO x'HIGH) LOOP ...

FOR i IN RANGE (0 TO x'LENGTH-1) LOOP ...

If the signal is of enumerated type, then:

 d'VAL(pos): Returns value in the position specified

 d'POS(value): Returns position of the value specified

 d'LEFTOF(value): Returns value in the position to the left of the value specified

 d'VAL(row, column): Returns value in the position specified; etc.

9

Signal Attributes

Let us consider a signal s. Then:

 s’EVENT: Returns true when an event occurs on s

 s’STABLE: Returns true if no event has occurred on s

 s’ACTIVE: Returns true if s = ‘1’

 s’QUIET 3time4: Returns true if no event has occurred during the time specified

 s’LAST_EVENT: Returns the time elapsed since last event

 s’LAST_ACTIVE: Returns the time elapsed since last s = ‘1’

 s’LAST_VALUE: Returns the value of s before the last event; etc.
Though most signal attributes are for simulation purposes only, the first two in the
list above are synthesizable, s’EVENT being the most often used of them all.

Example: All four assignments shown below are synthesizable and equivalent.
They return TRUE when an event (a change) occurs on clk, AND if such event is
upward (in other words, when a rising edge occurs on clk).

IF (clk'EVENT AND clk='1')... -- EVENT attribute used with IF

IF (NOT clk'STABLE AND clk='1')... -- STABLE attribute used with IF

WAIT UNTIL (clk'EVENT AND clk='1'); -- EVENT attribute used with WAIT

IF RISING_EDGE(clk)... -- call to a function

User-Defined Attributes

We saw above attributes of the type HIGH, RANGE, EVENT, etc. However,
VHDL also allows the construction of user defined attributes.

To employ a user-defined attribute, it must be declared and specified. The syntax is
the following:

10

Attribute declaration:

ATTRIBUTE attribute_name: attribute_type;

Attribute specification:

ATTRIBUTE attribute_name OF target_name: class IS value;

where:

attribute_type: any data type (BIT, INTEGER, STD_LOGIC_VECTOR, etc.)

class: TYPE, SIGNAL, FUNCTION, etc.

value: '0', 27, "00 11 10 01", etc.

Example:

ATTRIBUTE number_of_inputs: INTEGER; -- declaration

ATTRIBUTE number_of_inputs OF nand3: SIGNAL IS 3; -- specification
...
inputs <= nand3'number_of_pins; -- attribute call, returns 3

Example:

Enumerated encoding.

A popular user-defined attribute, which is provided by synthesis tool vendors, is the
enum_encoding attribute. By default, enumerated data types are encoded
sequentially.

Thus, if we consider the enumerated data type color shown below:

TYPE color IS (red, green, blue, white);

its states will be encoded as red = "00", green = "0"’, blue ="10", and white ="11".

11

Enum_encoding allows the default encoding (sequential) to be changed. Thus
the following encoding scheme could be employed, for example:

ATTRIBUTE enum_encoding OF color: TYPE IS "11 00 10 01";

GENERIC

As the name suggests, GENERIC is a way of specifying a generic parameter (that
is, a static parameter that can be easily modified and adapted to different
applications).

The purpose is to confer the code more flexibility and reusability.
A GENERIC statement, when employed, must be declared in the ENTITY.

Its syntax is shown below.

GENERIC (parameter_name : parameter_type := parameter_value);

Example:

The GENERIC statement below specifies a parameter called n, of type
INTEGER, whose default value is 8.

Therefore, whenever n is found in the ENTITY itself or in the ARCHITECTURE
(one or more) that follows, its value will be assumed to be 8.

ENTITY my_entity IS
GENERIC (n : INTEGER := 8);
PORT (...);
END my_entity;

ARCHITECTURE my_architecture OF my_entity IS
...
END my_architecture:

More than one GENERIC parameter can be specified in an ENTITY.

For example:
GENERIC (n: INTEGER := 8; vector: BIT_VECTOR := "00001111");

Examp

The pa
input v

1 ------
2 ENTI
3 G
4 P
5 o
6 END

7 ------
8 ARC
9 B
10
11
12 B
13
14
15 t
16
17
18 E
19 END
20 -----

ple: Gener

arity detect
vector is ev

ITY parity
GENERIC
PORT (in
output: OU

D parity_de

CHITECTU
BEGIN

PRO
VAR

BEGIN
temp
FOR

END
outp

END PRO
D parity;

ric Parity D

tor circuit
ven, or out

y_det IS
C (n : INTE
nput: IN B
UT BIT);
et;

URE parity

OCESS (in
RIABLE t

mp := '0';
R i IN inpu

emp :=
D LOOP;
put <= tem

OCESS;

Detector

must prov
tput ='0' ot

EGER := 7
IT_VECT

y OF parit

nput)
temp: BIT

ut'RANGE
temp XO

mp;

12

vide outpu
therwise.

7);
TOR (n DO

ty_det IS

T;

E LOOP
R input(i)

ut = '0' whe

OWNTO 0

);

en the num

0);

mber of '1'

s in the

13

Solution-2

1 ---
2 ENTITY parity_gen IS
3 GENERIC (n : INTEGER := 7);
4 PORT (input: IN BIT_VECTOR (n-1 DOWNTO 0);
5 output: OUT BIT_VECTOR (n DOWNTO 0));
6 END parity_gen;
7 ---
8 ARCHITECTURE parity OF parity_gen IS
9 BEGIN
10 PROCESS (input)
11 VARIABLE temp1: BIT;
12 VARIABLE temp2: BIT_VECTOR (output'RANGE);
13 BEGIN
14 temp1 := '0';
15 FOR i IN input'RANGE LOOP
16 temp1 := temp1 XOR input(i);
17 temp2(i) := input(i);
18 END LOOP;
19 temp2(output'HIGH) := temp1;
20 output <= temp2;
21 END PROCESS;
22 END parity;
23 ---

Examp

1 --------
2 LIBRA
3 USE i
4 --------
5 ENTIT
6 P
7 s
8 x
9 END d
10 ------
11 ARC
12 B
13 P
14
15

16 B
17
18
19 I

20
21
22
23
24
25
26

27

28 E
29
30 E

31 END
32 ------

ple: Gener

ARY ieee;
eee.std_logi

TY decoder
PORT (ena
sel : IN STD
x : OUT ST
decoder;

CHITECTUR
BEGIN
PROCESS (

VAR
VAR

BEGIN
temp
temp

IF (ena='1')

FOR

END

temp

END IF;
x <=

END PROC

D generic_de

ric Decode

ic_1164.all;

r IS
a : IN STD_L
D_LOGIC_V
D_LOGIC_

RE generic_

(ena, sel)
RIABLE tem
RIABLE tem

p1 := (OTHE
p2 := 0;
THEN

R i IN sel'RA
IF (sel(i)
 t
ELSE

END IF;

D LOOP;

p1(temp2):=

= temp1;
CESS;

ecoder;

er

;

LOGIC;
VECTOR (2
_VECTOR (

_decoder OF

mp1 : STD_
mp2 : INTE

ERS => '1')

ANGE LOO
)='1') THEN
emp2:=2*te

:= 2*temp2
;

='0';

14

2 DOWNTO
(7 DOWNT

F decoder IS

_LOGIC_VE
GER RANG

;

OP -- sel ran
N -- Bin-to-I
emp2+1;

;

O 0);
TO 0));

S

ECTOR (x'H
GE 0 TO x'H

nge is 2 dow
Integer conv

HIGH DOW
HIGH;

wnto 0
version

WNTO 0);

Summa

ary:

15

