
1

Arrays

Arrays are collections of objects of the same type. They can be one-dimensional

(1D), two-dimensional (2D), or one-dimensional-by-one-dimensional (1Dx1D).

They can also be of higher dimensions, but then they are generally not synthesizable.

TYPE type_name IS ARRAY (specification) OF data_type;

SIGNAL signal_name: type_name [:= initial_value];

Example:

TYPE row IS ARRAY (7 DOWNTO 0) OF STD_LOGIC; -- 1D array

TYPE matrix IS ARRAY (0 TO 3) OF row; -- 1Dx1D array

SIGNAL x: matrix; -- 1Dx1D signal

Example: Another 1Dx1D array.

Another way of constructing the 1Dx1D array above would be the following:

TYPE matrix IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

2

Example: 2D array.

The array below is truly two-dimensional. Notice that its construction is not based

on vectors, but rather entirely on scalars.

TYPE matrix2D IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC;

-- 2D array

Example: Array initialization.

The initial value of a SIGNAL or VARIABLE is optional.

However, when initialization is required, it can be done as in the examples

below.

... :="0001"; -- for 1D array

... :=('0','0','0','1') -- for 1D array

... :=(('0','1','1','1'), ('1','1','1','0')); -- for 1Dx1D or

-- 2D array

Example: Legal and illegal array assignments.

The assignments in this example are based on the following type definitions and

signal declarations:

TYPE row IS ARRAY (7 DOWNTO 0) OF STD_LOGIC;

-- 1D array

TYPE array1 IS ARRAY (0 TO 3) OF row;

-- 1Dx1D array

TYPE array2 IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

-- 1Dx1D

TYPE array3 IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC;

3

-- 2D array

SIGNAL x: row;

SIGNAL y: array1;

SIGNAL v: array2;

SIGNAL w: array3;

--------- Legal scalar assignments: ---------------

-- The scalar (single bit) assignments below are all legal,

-- because the "base" (scalar) type is STD_LOGIC for all signals

-- (x,y,v,w).

x(0) <= y(1)(2); -- notice two pairs of parenthesis

-- (y is 1Dx1D)

x(1) <= v(2)(3); -- two pairs of parenthesis (v is 1Dx1D)

x(2) <= w(2,1); -- a single pair of parenthesis (w is 2D)

y(1)(1) <= x(6);

y(2)(0) <= v(0)(0);

y(0)(0) <= w(3,3);

w(1,1) <= x(7);

w(3,0) <= v(0)(3);

--------- Vector assignments: ---------------------

x <= y(0); -- legal (same data types: ROW)

x <= v(1); -- illegal (type mismatch: ROW x

-- STD_LOGIC_VECTOR)

x <= w(2); -- illegal (w must have 2D index)

x <= w(2, 2 DOWNTO 0); -- illegal (type mismatch: ROW x

4

-- STD_LOGIC)

v(0) <= w(2, 2 DOWNTO 0); -- illegal (mismatch: STD_LOGIC_VECTOR

-- x STD_LOGIC)

v(0) <= w(2); -- illegal (w must have 2D index)

y(1) <= v(3); -- illegal (type mismatch: ROW x

-- STD_LOGIC_VECTOR)

y(1)(7 DOWNTO 3) <= x(4 DOWNTO 0); -- legal (same type,

-- same size)

v(1)(7 DOWNTO 3) <= v(2)(4 DOWNTO 0); -- legal (same type,

-- same size)

w(1, 5 DOWNTO 1) <= v(2)(4 DOWNTO 0); -- illegal (type mismatch)

Port Array

Since TYPE declarations are not allowed in an ENTITY, the solution is to declare

user-defined data types in a PACKAGE, which will then be visible to the whole

design (thus including the ENTITY).

------- Package: --------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

PACKAGE my_data_types IS

TYPE vector_array IS ARRAY (NATURAL RANGE <>) OF

STD_LOGIC_VECTOR(7 DOWNTO 0);

END my_data_types;

--

5

------- Main code: -------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE work.my_data_types.all; -- user-defined package

ENTITY mux IS

PORT (inp: IN VECTOR_ARRAY (0 TO 3);

...);

END mux;

... ;

--

A user-defined data type, called vector_array was created, which can contain an

indefinite number of vectors of size eight bits each (NATURAL RANGE <> signifies

that the range is not fixed, with the only restriction that it must fall within the

NATURAL range, which goes from 0 to +2,147,483,647).

Signed and Unsigned Data Types

These types are defined in the std_logic_arith package of the ieee library.

Examples:

SIGNAL x: SIGNED (7 DOWNTO 0);

SIGNAL y: UNSIGNED (0 TO 3);

An UNSIGNED value is a number never lower than zero. For example, ‘‘0101’’

represents the decimal 5, while ‘‘1101’’ signifies 13. If type SIGNED is used instead,

6

the value can be positive or negative (in two’s complement format). Therefore,

‘‘0101’’ would represent the decimal 5, while ‘‘1101’’ would mean -3.

SIGNED and UNSIGNED data types are intended mainly for arithmetic operations,

that is, contrary to STD_LOGIC_VECTOR, they accept arithmetic operations. On

the other hand, logical operations are not allowed.

Example: Legal and illegal operations with signed/unsigned data types.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all; -- extra package necessary

...

SIGNAL a: IN SIGNED (7 DOWNTO 0);

SIGNAL b: IN SIGNED (7 DOWNTO 0);

SIGNAL x: OUT SIGNED (7 DOWNTO 0);

...

v <= a + b; -- legal (arithmetic operation OK)

w <= a AND b; -- illegal (logical operation not OK)

Example: Legal and illegal operations with std_logic_vector.

LIBRARY ieee;

USE ieee.std_logic_1164.all; -- no extra package required

...

SIGNAL a: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL x: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

7

...

v <= a + b; -- illegal (arithmetic operation not OK)

w <= a AND b; -- legal (logical operation OK)

The ieee library provides two packages, std_logic_signed and std_logic_unsigned,

which allow operations with STD_LOGIC_VECTOR data to be performed as if the

data were of type SIGNED or UNSIGNED, respectively.

Example: Arithmetic operations with std_logic_vector.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all; -- extra package included

...

SIGNAL a: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL x: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

...

v <= a + b; -- legal (arithmetic operation OK), unsigned

w <= a AND b; -- legal (logical operation OK)

Data Conversion

TYPE long IS INTEGER RANGE -100 TO 100;

TYPE short IS INTEGER RANGE -10 TO 10;

SIGNAL x : short;

8

SIGNAL y : long;

...

y <= 2*x + 5; -- error, type mismatch

y <= long(2*x + 5); -- OK, result converted into type long

Several data conversion functions can be found in the std_logic_arith package of

the ieee library. They are:

* conv_integer(p) : Converts a parameter p of type INTEGER, UNSIGNED,

SIGNED, or STD_ULOGIC to an INTEGER value. Notice that STD_LOGIC_

VECTOR is not included.

*conv_unsigned(p, b): Converts a parameter p of type INTEGER, UNSIGNED,

SIGNED, or STD_ULOGIC to an UNSIGNED value with size b bits.

* conv_signed(p, b): Converts a parameter p of type INTEGER, UNSIGNED,

SIGNED, or STD_ULOGIC to a SIGNED value with size b bits.

* conv_std_logic_vector(p, b): Converts a parameter p of type INTEGER,

UNSIGNED, SIGNED, or STD_LOGIC to a STD_LOGIC_VECTOR value with

size b bits.

Example: Data conversion.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

...

SIGNAL a: IN UNSIGNED (7 DOWNTO 0);

SIGNAL b: IN UNSIGNED (7 DOWNTO 0);

SIGNAL y: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

9

y <= CONV_STD_LOGIC_VECTOR ((a+b), 8);

-- Legal operation: a+b is converted from UNSIGNED to an

-- 8-bit STD_LOGIC_VECTOR value, then assigned to y.

Example:

TYPE byte IS ARRAY (7 DOWNTO 0) OF STD_LOGIC; -- 1D array

TYPE mem1 IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC; -- 2D array

TYPE mem2 IS ARRAY (0 TO 3) OF byte; -- 1Dx1D array

TYPE mem3 IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(0 TO 7); -- 1Dx1D

-- array

SIGNAL a: STD_LOGIC; -- scalar signal

SIGNAL b: BIT; -- scalar signal

SIGNAL x: byte; -- 1D signal

SIGNAL y: STD_LOGIC_VECTOR (7 DOWNTO 0); -- 1D signal

SIGNAL v: BIT_VECTOR (3 DOWNTO 0); -- 1D signal

SIGNAL z: STD_LOGIC_VECTOR (x'HIGH DOWNTO 0); -- 1D signal

SIGNAL w1: mem1; -- 2D signal

SIGNAL w2: mem2; -- 1Dx1D signal

SIGNAL w3: mem3; -- 1Dx1D signal

-------- Legal scalar assignments: ---------------------

x(2) <= a; -- same types (STD_LOGIC), correct indexing

y(0) <= x(0); -- same types (STD_LOGIC), correct indexing

z(7) <= x(5); -- same types (STD_LOGIC), correct indexing

b <= v(3); -- same types (BIT), correct indexing

10

w1(0,0) <= x(3); -- same types (STD_LOGIC), correct indexing

w1(2,5) <= y(7); -- same types (STD_LOGIC), correct indexing

w2(0)(0) <= x(2); -- same types (STD_LOGIC), correct indexing

w2(2)(5) <= y(7); -- same types (STD_LOGIC), correct indexing

w1(2,5) <= w2(3)(7); -- same types (STD_LOGIC), correct indexing

------- Illegal scalar assignments: --------------------

b <= a; -- type mismatch (BIT x STD_LOGIC)

w1(0)(2) <= x(2); -- index of w1 must be 2D

w2(2,0) <= a; -- index of w2 must be 1Dx1D

------- Legal vector assignments: ----------------------

x <= "11111110";

y <= ('1','1','1','1','1','1','0','Z');

z <= "11111" & "000";

x <= (OTHERS => '1');

y <= (7 =>'0', 1 =>'0', OTHERS => '1');

z <= y;

y(2 DOWNTO 0) <= z(6 DOWNTO 4);

w2(0)(7 DOWNTO 0) <= "11110000";

w3(2) <= y;

z <= w3(1);

z(5 DOWNTO 0) <= w3(1)(2 TO 7);

w3(1) <= "00000000";

w3(1) <= (OTHERS => '0');

w2 <= ((OTHERS=>'0'),(OTHERS=>'0'),(OTHERS=>'0'),(OTHERS=>'0'));

11

w3 <= ("11111100", ('0','0','0','0','Z','Z','Z','Z',),

(OTHERS=>'0'), (OTHERS=>'0'));

w1 <= ((OTHERS=>'Z'), "11110000" ,"11110000", (OTHERS=>'0'));

------ Illegal array assignments: ----------------------

x <= y; -- type mismatch

y(5 TO 7) <= z(6 DOWNTO 0); -- wrong direction of y

w1 <= (OTHERS => '1'); -- w1 is a 2D array

w1(0, 7 DOWNTO 0) <="11111111"; -- w1 is a 2D array

w2 <= (OTHERS => 'Z'); -- w2 is a 1Dx1D array

w2(0, 7 DOWNTO 0) <= "11110000"; -- index should be 1Dx1D

Example:

--

ENTITY and2 IS

PORT (a, b: IN BIT;

x: OUT BIT);

END and2;

12

--

ARCHITECTURE and2 OF and2 IS

BEGIN

x <= a AND b;

END and2;

--

ENTITY and2 IS

PORT (a, b: IN BIT_VECTOR (0 TO 3);

x: OUT BIT_VECTOR (0 TO 3));

END and2;

--

--

ARCHITECTURE and2 OF and2 IS

BEGIN

x <= a AND b;

END and2;

--

Example:

13

1 ----- Solution 1: in/out=SIGNED ----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all;

5 --

6 ENTITY adder1 IS

7 PORT (a, b : IN SIGNED (3 DOWNTO 0);

8 sum : OUT SIGNED (4 DOWNTO 0));

9 END adder1;

10 --

11 ARCHITECTURE adder1 OF adder1 IS

12 BEGIN

13 sum <= a + b;

14 END adder1;

15 --

1 ------ Solution 2: out=INTEGER -----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all;

5 --

6 ENTITY adder2 IS

7 PORT (a, b : IN SIGNED (3 DOWNTO 0);

8 sum : OUT INTEGER RANGE -16 TO 15);

9 END adder2;

14

10 --

11 ARCHITECTURE adder2 OF adder2 IS

12 BEGIN

13 sum <= CONV_INTEGER(a + b);

14 END adder2;

15 --

Notice also the inclusion of the std_logic_arith package (line 4 of each solution),

which specifies the SIGNED data type. Recall that a SIGNED value is represented

like a vector; that is, similar to STD_LOGIC_VECTOR, not like an INTEGER.

Example: Tri-state Buffer

 LIBRARY ieee;

 USE ieee.std_logic_1164.all;

 ENTITY tri_state IS

 PORT (input, ena: IN STD_LOGIC;

 output: OUT STD_LOGIC);

 END ENTITY;

 ARCHITECTURE behavior_of_tri_state OF tri_state IS

 BEGIN

15

 output <= input WHEN ena='1' ELSE 'Z';

 END ARCHITECTURE;

Example:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY circuit IS

PORT (x: IN STD_LOGIC_VECTOR(1 DOWNTO 0);

y: OUT STD_LOGIC_VECTOR(1 DOWNTO 0));

END ENTITY;

ARCHITECTURE circuit OF circuit IS

BEGIN

y <= "00" WHEN x="00" ELSE

"01" WHEN x="10" ELSE

"10" WHEN x="01" ELSE

"--";

END ARCHITECTURE;

16

Fixed- and Floating-Point Types

Fixed-Point Types:

The main fixed-point types are the following:

TYPE UFIXED IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC; --unsigned

TYPE SFIXED IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC; --signed

The files needed to use such types in VHDL 2008 are (see IEEE 1076-2008

standard):

 fixed_ pkg.vhdl (contains the package fixed_ pkg)

 fixed_generic_ pkg.vhdl (contains the package fixed_generic_ pkg)

 fixed_generic_ pkg-body.vhdl (contains the package body of fixed_generic_ pkg)

 fixed_ float_types.vhdl (contains the package fixed_ float_types)

Examples with unsigned fixed-point numbers:

x: SIGNAL UFIXED(2 DOWNTO -3); --this is "xxx.xxx"

y: SIGNAL UFIXED(4 DOWNTO -1); --this is "yyyyy.y"

z: SIGNAL UFIXED(-2 DOWNTO -3); --this is "0.0zz"

...

x <= "100011"; --1x22+0x21+0x20+0x2-1+1x2- 2+1x2- 3=4.375

y <= "100011"; --1x24+0x23+0x22+0x21+1x20+1x2-1=17.5

z <= "10"; --1x2- 2+0x2-3=0.25

x: range from 0 to 7.875 in steps of 0.125 (a total of 2𝑏𝑖𝑡𝑠 = 26 = 64 values).

y: range from 0 to 31.5 in steps of 0.5 (a total of 2𝑏𝑖𝑡𝑠 = 26 = 64 values).

z: range from 0 to 0.375 in steps of 0.125 (a total of 2𝑏𝑖𝑡𝑠 = 22 = 4 values).

17

Examples with signed fixed-point numbers:

x: SIGNAL SFIXED(2 DOWNTO -3); --this is "xxx.xxx"

y: SIGNAL SFIXED(4 DOWNTO -1); --this is "yyyyy.y"

z: SIGNAL SFIXED(-2 DOWNTO -3); --this is "0.0zz"

...

x <= "100011"; --100.011 -> 2's compl=011.101 -> -3.625 (or 4.375-8=-3.625)

y <= "100011"; --10001.1 -> 2's compl=01110.1 -> -14.5 (or 17.5-32=-14.5)

z <= "10"; --0.010 = +0.25

A large set of operators (details about operators are given in chapter 4) and type

conversion functions are defined for these new types. A simplified list is presented

below.

a) Operators:

Logical: NOT, AND, NAND, OR, NOR, XOR, XNOR

Arithmetic: +, -, *, /, ABS, REM, MOD, ADD_CARRY, etc.

Comparison: =, /=, >, <, <=, >=, MAXIMUM, MINIMUM

Shift: SLL, SRL, SLA, SRA, ROR, ROL, SHIFT_LEFT, SHIFT_RIGHT

and others…..

b) Type-conversion functions:

TO_UFIXED, TO_SFIXED, TO_UNSIGNED, TO_SIGNED, TO_SLV (same as

TO_STDLOGICVECTOR), TO_INTEGER, TO_REAL, TO_STRING, etc.

18

Example:

x: SIGNAL UFIXED(4 DOWNTO -3); --"xxxxx.xxx"

y: SIGNAL SFIXED(4 DOWNTO -3); --"yyyyy.yyy"

z: SIGNAL SFIXED(5 DOWNTO -3); --"zzzzzz.zzz"

...

x <= TO_UFIXED(17.5, 4, -3); --converts 17.5 to UFIXED; result="10001100"

z <= -y; --unary "-" (only for signed); result=2's compl. of y

Example:

 LIBRARY ieee_proposed;

 USE ieee_proposed.fixed_pkg.all;

 ENTITY fixed IS

 PORT (a, b: IN SFIXED(3 DOWNTO -3);

 x: OUT SFIXED(4 DOWNTO -3);

 y: OUT SFIXED(7 DOWNTO -6));

 END ENTITY;

 ARCHITECTURE fixed OF fixed IS

 BEGIN

 x <= a + b;

 y <= a * b;

 END ARCHITECTURE;

19

The arithmetic operations are constructed with vector sizes such that overflow

is always prevented. Some examples are shown below, where a and b are the inputs

a + b, a - b: Range is max(a'LEFT, b'LEFT) + 1 DOWNTO min(a'RIGHT, b'RIGHT)

a*b: Range is a'LEFT + b'LEFT + 1 DOWNTO a'RIGHT + b'RIGHT

a/b unsigned: Range is a'LEFT - b'RIGHT DOWNTO a'RIGHT + b'LEFT - 1

a/b signed: Range is a'LEFT - b'RIGHT + 1 DOWNTO a'RIGHT + b'LEFT

-a (unary "-", for signed only): Range is a'LEFT + 1 DOWNTO a'RIGHT

Floating-Point Types

The main floating-point type and subtypes are the following:

TYPE FLOAT IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC; --generic

length

SUBTYPE FLOAT32 IS FLOAT(8 DOWNTO -23); --32-bit FP of IEEE 754

SUBTYPE FLOAT64 IS FLOAT(11 DOWNTO -52); --64-bit FP of IEEE 754

SUBTYPE FLOAT128 IS FLOAT(15 DOWNTO -112); --128-bit FP of IEEE 754

The files needed to use such types in VHDL 2008 are (see IEEE 1076-2008

Standard):

- float_ pkg.vhdl (contains the package float_ pkg)

- float_generic_ pkg.vhdl (contains the package float_generic_ pkg)

- float_generic_ pkg-body.vhdl (contains the package body of float_generic_ pkg)

- fixed_ float_types.vhdl. (already mentioned)

The representation of floating-point numbers in the IEEE 754 standard obeys the

structure illustrated in the figure below (for the 32-bit case):

20

Calling x the stored number, its value is given by 𝑥 = (−1)𝑆(1 + 𝐹)2𝐸−𝑁, where S

is the sign (0 when positive, 1 when negative), F is the fraction, E is the exponent,

and N is a normalization factor given by 𝑁 = (𝐸𝑚𝑎𝑥 + 1)/2 − 1 (for example, 𝑁 =

127 when the exponent has 8 bits or 𝑁 = 1023 when it has 11 bits).

Example (with 3-bit exponent and 4-bit fraction, hence a total of 8 bits):

x <= "10010110"; --(1)(001)(0110) = -(1+0.375)21 - 3 = -0.34375

x <= "01101000"; --(0)(110)(1000) = +(1+0.5)26 -3 = 12.0

In VHDL, the minimum length of a floating-point number is 7 bits, with the

following distribution: 1 bit for the sign, 3 bits for the exponent, and 3 bits for the

fraction.

As with fixed-point, a large set of operators and type-conversion functions are

defined for the floating-point types. A simplified list is presented below.

a) Operators:

Logical: NOT, AND, NAND, OR, NOR, XOR, XNOR

Arithmetic: +, -, *, /, ABS, REM, MOD, ADD_CARRY, etc.

Comparison: =, /=, >, <, <=, >=, MAXIMUM, MINIMUM

others…..

b) Type-conversion functions:

TO_FLOAT, TO_FLOAT32, TO_FLOAT64, TO_FLOAT128, TO_UNSIGNED,

TO_SIGNED, TO_SLV, etc.

21

Example:

SIGNAL x: FLOAT(3 DOWNTO -4); --(S)(EEE)(FFFF)

SIGNAL y: FLOAT(3 DOWNTO -4);

SIGNAL z: STD_LOGIC_VECTOR(7 DOWNTO 0);

...

--Convert 12.0 to float with format (S)(EEE)(FFFF):

x <= TO_FLOAT(12.0, 3, 4); --result="01101000"

x <= TO_FLOAT(12.0, x); --same as above

--Convert std_logic_vector to float with format (S)(EEE)(FFFF):

y <= TO_FLOAT(z, 3, 4);

Example:

 LIBRARY ieee_proposed;

 USE ieee_proposed.float_pkg.all;

 ENTITY floating IS

 PORT (a, b: IN FLOAT(3 DOWNTO -4);

 x, y: OUT FLOAT(3 DOWNTO -4));

 END ENTITY;

 ARCHITECTURE floating OF floating IS

 BEGIN

 x <= TO_FLOAT(0.34375, 3, 4) + a + b;

 y <= a * b;

 END ARCHITECTURE;

