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VHDL is a hardware description language. The code describes the behavior or 
structure of an electronic circuit. 

 

Its main applications include synthesis of digital circuits onto CPLD/FPGA 
(Complex Programmable Logic Device/Field Programmable Gate Array) chips and 
layout/mask generation for ASIC (Application-Specific Integrated Circuit) 
fabrication. 

 

VHDL stands for VHSIC (Very High Speed Integrated Circuits) Hardware 
Description Language, and resulted from an initiative funded by the U.S. 
Department of Defense in the 1980s. 

 

 Its first version was VHDL 87, later upgraded by VHDL 93, then VHDL 2002, 
and finally VHDL 2008. 

 

 It was the first hardware description language standardized by the IEEE, through 
the 1076 and 1164 standards. VHDL is technology/vendor independent, so VHDL 
codes are portable and reusable. 
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* From Aldec: Active-HDL (simulation). 

 

Number and Character Representations in VHDL 

Integers: 

For Integers default range in VHDL is from –(2ଷଵ െ 1)  to (2ଷଵ െ 1) 

Base 10: 5, 32, 3250, 3_250, 3E2 (3x10ଶ) 

Other Bases (From 2 to 16):  

Base-2:  2#0111#  → 0 ⋅ 2ଷ ൅ 1 ⋅ 2ଶ ൅ 1 ⋅ 2ଵ ൅ 1 ⋅ 2଴ ൌ 7 

Base-16: 16#9f#  → 9 ⋅ 16ଵ ൅ 15 ⋅ 16଴ ൌ 159 

 

Binary Values 

Regular Binary Form 

′0ᇱሺൌ 0ሻ,					"0111"ሺൌ 7ሻ,					ܾ"0111"ሺൌ 7ሻ,				11110000"ܤ"ሺൌ 240ሻ  

Octal and Hexadecimal Form 

O"54", o"0", X"C2F", x"D" 

 

Unsigned Values 

For N bits from 0 to 2ேିଵ 

 

Signed Values 

For N bits from െ2ேିଵ to 2ேିଵ െ 1 

The usual representation for negative numbers is two’s complement 
 
"110000" =-16  
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ENTITY entity_name IS 
[GENERIC ( 

const_name: const_type const_value; 
...);] 

[PORT ( 
signal_name: mode signal_type; 
...);] 

[entity_declarative_part] 
[BEGIN 

entity_statement_part] 
END [ENTITY] [entity_name]; 
 
Example: The ENTITY below contains the first three of the four sections 
mentioned above. 
 
ENTITY controller IS 
 

GENERIC (N: INTEGER := 8); 
 
PORT (a, b: IN INTEGER RANGE 0 TO 2**N-1; 

x: OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0)); 
 

TYPE byte IS ARRAY (7 DOWNTO 0) OF STD_LOGIC; 
CONSTANT mask: byte "00001111"; 
 

END ENTITY; 
 
 
ARCHITECTURE 
 
ARCHITECTURE contains a description of how the circuit should function, from 
which the actual circuit is inferred. 
 
ARCHITECTURE architecture_name OF entity_name IS 

[architecture_declarative_part] 
BEGIN 

architecture_statements_part 
 

END [ARCHITECTURE] [architecture_name]; 
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Example: 
 
ENTITY nand_gate IS 

PORT (a, b: IN BIT; 
x: OUT BIT); 

END ENTITY; 
 
ARCHITECTURE arch OF nand_gate IS 
BEGIN 

x <= a NAND b; 
END ARCHITECTURE; 
 
 
GENERIC 
 
GENERIC declarations allow the specification of generic parameters (that is, 
generic constants, which can be easily modified or adapted to different 
applications). 
 
GENERIC (constant_name: constant_type := constant_value; 

constant_name: constant_type := constant_value; 
... ); 
 
Example: 
 
ENTITY my_entity IS 

GENERIC (m: INTEGER := 8; 
n: BIT_VECTOR(3 DOWNTO 0) := "0101"); 
PORT (...); 

END my_entity; 
 
Example: Compare-Add Circuit 
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19  END PROCESS; 
20   END ARCHITECTURE; 
21   ---------------------------------------- 
 
 
Lines 2–3: Because the data typeSTD_LOGIC is employed in this design, 
the package std_logic_1164 must be included. 
 
Lines 5–8: Second part (ENTITY) of the code, in this example named flip-
flop. 
 
Lines 10–20: Third part (ARCHITECTURE) of the code, here with the same 
name as the entity. 
 
Line 6: Input ports, all of type STD_LOGIC. 
Line 7: Output port, also of type STD_LOGIC. 
 
Lines 12–19: Code part of the architecture (starts after the word BEGIN). In 
this case, the code contains just a PROCESS, needed because we want to 
implement a sequential (clocked) circuit (code inside a process is executed 
sequentially). 
 
Line 12: Note that two signals (clk, rst) are included in the process’s 
sensitivity list (the process is run whenever any of these signals change). 
 
Lines 14–15: If rst goes to '1', the flip-flop is reset, regardless of clk. 
 
Lines 16–17: If rst is not active, plus clk has changed (an EVENT occurred 
on clk), and such an event was a rising edge (clk = '1'), then the input signal 
(d ) is stored into the flipflop (q <= d). 
 
Lines 15 and 17: The operator "<=" is used to assign a value to a SIGNAL 
(all ports are signals by default). In contrast, ":=" would be used for a 
VARIABLE. 
 
Lines 1, 4, 9, and 21: Employed to better organize the code. 
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CONSTANT bits: INTEGER := 16; 
CONSTANT words: INTEGER := 2**bits; 
CONSTANT flag: BIT := '1'; 
CONSTANT mask: BIT_VECTOR(1 TO 8) := "00001111"; 
 
CONSTANT can be declared in the declarative part of ENTITY, 
ARCHITECTURE, PACKAGE, PACKAGE BODY, BLOCK, GENERATE, 
PROCESS, FUNCTION, and PROCEDURE (the last two are called subprograms). 
 
Keyword OTHERS 
OTHERS is a useful keyword for making assignments. It represents all index 
values that were left unspecified. 
 
Examples 
-------------------------------------------------------------- 
The constant below is a = "000000". 
CONSTANT a: BIT_VECTOR(5 DOWNTO 0) := (OTHERS=>'0'); 
-------------------------------------------------------------- 
The next constant is b = "01111111" (index 7 gets '0', the others, '1'). 
CONSTANT b: BIT_VECTOR(7 DOWNTO 0) := (7=>'0', OTHERS=>'1'); 
-------------------------------------------------------------- 
The signal below is c = "01100000" ("|" means "or"). 
SIGNAL c: STD_LOGIC_VECTOR(1 TO 8) := (2|3=>'1', OTHERS=>'0'); 
-------------------------------------------------------------- 
The variable below is d = "1111111100000000". 
VARIABLE d: BIT_VECTOR(1 TO 16) := (1 TO 8=>'1', OTHERS=>'0'); 
 
 
SIGNAL 
SIGNAL serves to pass values in and out of the circuit, as well as between its 
internal units. In other words, a signal represents circuit wires. 
 
Signal declarations are not allowed in sequential code (i.e., PROCESS and 
subprograms), but signals can be used there 
 
SIGNAL signal_name: signal_type [range] [:= default_value]; 
 
Examples: 
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SIGNAL enable: BIT <= '0'; 
SIGNAL temp: BIT_VECTOR(3 DOWNTO 0); 
SIGNAL byte: STD_LOGIC_VECTOR(7 DOWNTO 0); 
SIGNAL count: NATURAL RANGE 0 TO 255; 
 
To assign a value to a SIGNAL, the proper operator is "<=", while for 
CONSTANT or VARIABLE (or for default values) it is ":=". For example, "enable 
<= '1 ; '” 
 
VARIABLE 
Contrary to CONSTANT and SIGNAL, VARIABLE represents only local 
information because it can only be seen and modified inside the sequential unit 
(i.e., PROCESS or subprogram) where it was created. 
 
VARIABLE variable_name: variable_type [range] [:= default_value] 
 
VARIABLE flip: STD_LOGIC := '1'; 
VARIABLE address: STD_LOGIC_VECTOR(0 TO 15); 
VARIABLE counter: INTEGER RANGE 0 TO 127; 
 
 
Data-Type Libraries and Packages 
The fundamental packages for dealing with binary logic and with 
integer numbers are: 
 
Package standard (expanded in VHDL 2008) 
Package std_logic_1164 (expanded in VHDL 2008) 
Package numeric_bit (expanded in VHDL 2008) 
Package numeric_std (expanded in VHDL 2008) 
Package std_logic_arith (shareware, nonstandard) 
Package std_logic_unsigned (shareware, nonstandard) 
Package std_logic_signed (shareware, nonstandard) 
Package textio (expanded in VHDL 2008) 
Package numeric_bit_unsigned (introduced in VHDL 2008) 
Package numeric_std_unsigned (introduced in VHDL 2008) 
 
Package standard 
 
It defines the following data types: 
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 Bit-related (synthesizable): BIT, BIT_VECTOR, BOOLEAN 
 Integer-related (synthesizable): INTEGER, NATURAL, POSITIVE 
 Character-related (synthesizable): CHARACTER, STRING 
 Floating-point (limited synthesis support): REAL 
 Time-related (not for synthesis): TIME, DELAY_LENGTH 
 
In VHDL 2008, the following was added to the package standard: 
New types: BOOLEAN_VECTOR, INTEGER_VECTOR, REAL_VECTOR, 
TIME_VECTOR. 
 
 
Examples: 
 
SIGNAL x: BIT; 
-- x is declared as a one-digit signal of type BIT. 
 
SIGNAL y: BIT_VECTOR (3 DOWNTO 0); 
-- y is a 4-bit vector, with the leftmost bit being the MSB. 
 
SIGNAL w: BIT_VECTOR (0 TO 7); 
-- w is an 8-bit vector, with the rightmost bit being the MSB. 
 
Based on the signals above, the following assignments would be legal (to assign a 
value to a signal, the ‘‘<=’’ operator must be used): 
 
x <= '1'; 
-- x is a single-bit signal (as specified above), whose value is  '1'. Notice that single 
quotes (' ') are used for a single bit. 
 
y <= "0111"; 
-- y is a 4-bit signal (as specified above), whose value is "0111".  (MSB='0'). 
Notice that double quotes (" ") are used for vectors. 
 
w <= "01110001"; 
-- w is an 8-bit signal, whose value is "01110001" (MSB='1'). 
 
 
Package std_logic_1164  
 
The main types defined in that package are: 
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Package numeric_std  
 
The types below are defined in it: 
 
UNSIGNED (based on STD_LOGIC) 
SIGNED (also based on STD_LOGIC) 
 
Examples: 
 
x0 <= '0'; -- bit, std_logic, or std_ulogic value '0' 
 
x1 <= "00011111"; -- bit_vector, std_logic_vector, std_ulogic_vector, signed, or 
unsigned 
 
x2 <= "0001_1111"; -- underscore allowed to ease visualization 
 
x3 <= "101111" -- binary representation of decimal 47 
 
x4 <= B"101111" -- binary representation of decimal 47 
 
x5 <= O"57" -- octal representation of decimal 47 
 
x6 <= X"2F" -- hexadecimal representation of decimal 47 
 
n <= 1200; -- integer 
 
m <= 1_200; -- integer, underscore allowed 
 
 
Example: Legal and illegal operations between data of di¤erent types. 
 
SIGNAL a: BIT; 
SIGNAL b: BIT_VECTOR(7 DOWNTO 0); 
SIGNAL c: STD_LOGIC; 
SIGNAL d: STD_LOGIC_VECTOR(7 DOWNTO 0); 
SIGNAL e: INTEGER RANGE 0 TO 255; 
... 
a <= b(5); -- legal (same scalar type: BIT) 
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b(0) <= a; -- legal (same scalar type: BIT) 
 
c <= d(5); -- legal (same scalar type: STD_LOGIC) 
 
d(0) <= c; -- legal (same scalar type: STD_LOGIC) 
 
a <= c; -- illegal (type mismatch: BIT x STD_LOGIC) 
 
b <= d; -- illegal (type mismatch: BIT_VECTOR x STD_LOGIC_VECTOR) 
 
e <= b; -- illegal (type mismatch: INTEGER x BIT_VECTOR) 
 
e <= d; -- illegal (type mismatch: INTEGER x STD_LOGIC_VECTOR) 
 
User-Defined Data Types 
 
TYPE integer IS RANGE -2147483647 TO +2147483647; 
-- This is indeed the pre-defined type INTEGER. 
 
TYPE natural IS RANGE 0 TO +2147483647; 
-- This is indeed the pre-defined type NATURAL. 
 
TYPE my_integer IS RANGE -32 TO 32; 
-- A user-defined subset of integers. 
 
TYPE student_grade IS RANGE 0 TO 100; 
-- A user-defined subset of integers or naturals. 
 
 
User-defined enumerated types: 
TYPE bit IS ('0', '1'); 
-- This is indeed the pre-defined type BIT 
 
TYPE my_logic IS ('0', '1', 'Z'); 
-- A user-defined subset of std_logic. 
 
TYPE bit_vector IS ARRAY (NATURAL RANGE <>) OF BIT; 
-- This is indeed the pre-defined type BIT_VECTOR. 
-- RANGE <> is used to indicate that the range is unconstrained. 
-- NATURAL RANGE <>, on the other hand, indicates that the only 
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-- restriction is that the range must fall within the NATURAL 
-- range. 
 
TYPE state IS (idle, forward, backward, stop); 
-- An enumerated data type, typical of finite state machines. 
 
TYPE color IS (red, green, blue, white); 
-- Another enumerated data type. 
 
Subtypes 
 
A SUBTYPE is a TYPE with a constraint. The main reason for using a subtype 
rather than specifying a new type is that, though operations between data of 
different types are not allowed, they are allowed between a subtype and its 
corresponding base type. 
 
SUBTYPE natural IS INTEGER RANGE 0 TO INTEGER'HIGH; 
-- As expected, NATURAL is a subtype (subset) of INTEGER. 
 
SUBTYPE my_logic IS STD_LOGIC RANGE '0' TO 'Z'; 
-- Recall that STD_LOGIC=('X','0','1','Z','W','L','H','-'). 
-- Therefore, my_logic=('0','1','Z'). 
 
SUBTYPE my_color IS color RANGE red TO blue; 
-- Since color=(red, green, blue, white), then 
-- my_color=(red, green, blue). 
 
SUBTYPE small_integer IS INTEGER RANGE -32 TO 32; 
-- A subtype of INTEGER. 
 
Example: Legal and illegal operations between types and subtypes. 
 
SUBTYPE my_logic IS STD_LOGIC RANGE '0' TO '1'; 
SIGNAL a: BIT; 
SIGNAL b: STD_LOGIC; 
SIGNAL c: my_logic; 
... 
b <= a; --illegal (type mismatch: BIT versus STD_LOGIC) 
b <= c; --legal (same "base" type: STD_LOGIC) 
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