
1

VHDL is a hardware description language. The code describes the behavior or
structure of an electronic circuit.

Its main applications include synthesis of digital circuits onto CPLD/FPGA
(Complex Programmable Logic Device/Field Programmable Gate Array) chips and
layout/mask generation for ASIC (Application-Specific Integrated Circuit)
fabrication.

VHDL stands for VHSIC (Very High Speed Integrated Circuits) Hardware
Description Language, and resulted from an initiative funded by the U.S.
Department of Defense in the 1980s.

 Its first version was VHDL 87, later upgraded by VHDL 93, then VHDL 2002,
and finally VHDL 2008.

 It was the first hardware description language standardized by the IEEE, through
the 1076 and 1164 standards. VHDL is technology/vendor independent, so VHDL
codes are portable and reusable.

EDA T

There a
synthes
compan
compan
below.

* From

* From

* From
ModelS

* From
(synthe

* From

Tools

are severa
sis and si
nies (Alte
nies (Men

m Altera: Q

m Xilinx: I

m Mentor
Sim (simu

m Synopsy
esis), VCS

m Cadence

al EDA (E
mulation

era, Xilinx
ntor Graph

Quartus II

SE (XST f

r Graphics
ulation)

ys/Synplic
S (simulati

: NC-Sim

Electronic
using VH

x, etc.), w
hics, Syno

(for synth

for synthe

s: Precisio

city: Desi
ion)

(simulatio

2

Design A
HDL. Som
while other

psys, Cad

esis and g

esis, ISE S

on RTL

ign Comp

on)

Automation
me tools ar
rs are offe
dence, etc.

graphical s

imulator f

and Leon

piler Ultra

n) tools av
re offered

ered by th
). Some e

imulation)

for simulat

nardo Spe

a and Syn

vailable fo
d by CPL
hird-party
examples a

)

tion)

ctrum (sy

nplify Pro

or circuit
D/FPGA
software

are listed

ynthesis),

o/Premier

3

* From Aldec: Active-HDL (simulation).

Number and Character Representations in VHDL

Integers:

For Integers default range in VHDL is from –(2ଷଵ െ 1) to (2ଷଵ െ 1)

Base 10: 5, 32, 3250, 3_250, 3E2 (3x10ଶ)

Other Bases (From 2 to 16):

Base-2: 2#0111# → 0 ⋅ 2ଷ ൅ 1 ⋅ 2ଶ ൅ 1 ⋅ 2ଵ ൅ 1 ⋅ 2଴ ൌ 7

Base-16: 16#9f# → 9 ⋅ 16ଵ ൅ 15 ⋅ 16଴ ൌ 159

Binary Values

Regular Binary Form

′0ᇱሺൌ 0ሻ,					"0111"ሺൌ 7ሻ,					ܾ"0111"ሺൌ 7ሻ,				11110000"ܤ"ሺൌ 240ሻ

Octal and Hexadecimal Form

O"54", o"0", X"C2F", x"D"

Unsigned Values

For N bits from 0 to 2ேିଵ

Signed Values

For N bits from െ2ேିଵ to 2ேିଵ െ 1

The usual representation for negative numbers is two’s complement

"110000" =-16

Chara

'A', 'a',

VHDL

Library
packag
work

 ENTIT
constan

ARCH
circuit

cters

'$', "VHD

L Code Str

y/package
ges needed

TY: Spec
nts.

HITECTUR
should fun

DL", "mp3

ructure

declarati
d in the de

cifies mai

RE: Conta
nction, fro

"

ions: Con
sign. The

inly the

ains the V
om which

4

ntains a
most com

circuit’s

VHDL cod
a complia

list of a
mmonly use

I/O port

de proper
ant hardwa

ll librarie
ed librarie

ts, plus (

r, which d
are is infer

es and re
es are ieee,

(optional)

describes
rred.

espective
, std, and

generic

how the

Librar

LIBRA
USE lib

Examp

LIBRA
USE st

LIBRA
USE w

LIBRA
USE ie
USE w

ry/Packag

ARY librar
brary_nam

ple:

ARY std;
td.standard

ARY work
work.all;

ARY ieee;
eee.std_log

work.my_p

ge Declara

ry_name;
me.packag

d.all;

k;

gic_1164.a
package.all

ations

e_name.al

all;
l;

5

ll;

ENTIT
The m
input a

ENTIT
 PO

.
END [E

PORT
BUFFE
interna

SIGNA

Examp

ENTIT

P
x

END E

An ent

a GEN
a gener
and fin

TY
ain part o

and output

TY entity_
ORT (
 port_
 port_
.);
ENTITY]

mode can
ER is emp
ally.

AL Type c

ple: NAND

TY nand_g
PORT (a,
x: OUT BI

ENTITY;

tity can co

NERIC dec
ral declara

nally a sect

of an ENT
ports (pin

_name IS

_name: po
_name: po

[entity_na

n be IN, OU
ployed wh

can be BIT

D GATE

gate IS
b: IN BIT
IT);

ontain thr

clarations s
ative part (
tion with p

TITY is PO
ns) of the c

ort_mode
ort_mode

ame];

UT, INOU
hen a sign

T, INTEGE

T;

ree other f

section (be
(after POR
passive ca

6

ORT, whi
circuit

signal_typ
signal_typ

UT, or BUF
nal is sent

ER, STD_

fields, wh

efore POR
RT),
alls or proc

ich is a li

pe;
pe;

FFER.
t out but

_LOGIC, a

hich are

RT),

cesses (als

ist with sp

it must al

and so on.

o after PO

pecificatio

lso be use

ORT)

ons of all

ed (read)

7

ENTITY entity_name IS
[GENERIC (

const_name: const_type const_value;
...);]

[PORT (
signal_name: mode signal_type;
...);]

[entity_declarative_part]
[BEGIN

entity_statement_part]
END [ENTITY] [entity_name];

Example: The ENTITY below contains the first three of the four sections
mentioned above.

ENTITY controller IS

GENERIC (N: INTEGER := 8);

PORT (a, b: IN INTEGER RANGE 0 TO 2**N-1;

x: OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0));

TYPE byte IS ARRAY (7 DOWNTO 0) OF STD_LOGIC;
CONSTANT mask: byte "00001111";

END ENTITY;

ARCHITECTURE

ARCHITECTURE contains a description of how the circuit should function, from
which the actual circuit is inferred.

ARCHITECTURE architecture_name OF entity_name IS

[architecture_declarative_part]
BEGIN

architecture_statements_part

END [ARCHITECTURE] [architecture_name];

8

Example:

ENTITY nand_gate IS

PORT (a, b: IN BIT;
x: OUT BIT);

END ENTITY;

ARCHITECTURE arch OF nand_gate IS
BEGIN

x <= a NAND b;
END ARCHITECTURE;

GENERIC

GENERIC declarations allow the specification of generic parameters (that is,
generic constants, which can be easily modified or adapted to different
applications).

GENERIC (constant_name: constant_type := constant_value;

constant_name: constant_type := constant_value;
...);

Example:

ENTITY my_entity IS

GENERIC (m: INTEGER := 8;
n: BIT_VECTOR(3 DOWNTO 0) := "0101");
PORT (...);

END my_entity;

Example: Compare-Add Circuit

The inp
outputs
ranging
> b or '

1 ---
2 LIB
3 US
4 ---
5 EN
6 P
7 c
8 s
9 EN
10 ---
11 AR
12 BE
13 c
14 s
15 EN
16 -----

 LIB
 USE

 ENT
 P

a
 c
 s

)
 END

puts are tw
s are comp
g from 0 t
'0' otherwi

BRARY i
SE ieee.std

NTITY com
PORT (a,
comp: OU
sum: OUT
ND ENTIT

RCHITEC
EGIN
comp <= '
sum <= a +
ND ARCH

BRARY ie
E ieee.std_

TITY com
PORT (
a, b: IN IN
comp: OU
sum: OUT
);
D ENTITY

wo unsign
p (single b
to 15). The
ise. The lo

ieee;
d_logic_11

mp_add IS
b: IN INT

UT STD_L
T INTEGE
TY;

CTURE cir

1' WHEN
+ b;

HITECTUR

ee;
_logic_116

mp_add IS

NTEGER R
UT STD_L
T INTEGE

Y;

ned 3-bit v
bit) and su
e upper pa
ower part m

164.all;

S

TEGER RA
LOGIC;
ER RANG

rcuit OF co

a>b ELSE

RE;

64.all;

RANGE 0
LOGIC;
ER RANG

9

values (a a
um (to avo
art must co
must add a

ANGE 0 T

E 0 TO 15

omp_add

E '0';

--

0 TO 7;

E 0 TO 15

and b, rang
oid overflo
ompare a
a and b, pr

TO 7;

5);

IS

5

ging from
ow, 4 bits
to b, prod

roducing s

m 0 to 7), w
are neede

ducing a '1
sum.

while the
ed, hence
1' when a

 ARC
 BEG
 c
 s
 END

Examp

One m
to regu

So to i
VHDL

1 -----
2 LIB
3 USE
4 -----
5 ENT
6 P
7 q
8 END
9 -----
10 AR
11 BE
12 P
13 B
14
15
16
17
18

CHITECTU
GIN

comp <= '
sum <= a +

D ARCHIT

ple: D-typ

must remem
ular compu

implement
L to be sequ

BRARY ie
E ieee.std_

TITY flip_
PORT (d,
q: OUT ST
D ENTITY

RCHITEC
EGIN
PROCESS
BEGIN

 IF (

ELS

END

URE circu

1' WHEN
+ b;

TECTURE

pe Flip-Flo

mber, how
uter progra

t any cloc
uential, wh

ee;
_logic_116

_flop IS
clk, rst: IN

TD_LOGI
Y;

CTURE flip

S (clk, rst)

(rst='1') TH
 q <= '0

SIF (clk'EV
q <= d;

D IF;

uit OF com

a>b ELSE

E;

op (DFF)

wever, that
ams, which

ked circui
hich can b

64.all;

N STD_LO
IC);

p_flop OF

HEN
0';
VENT AN
;

10

mp_add IS

E '0';

VHDL co
h are sequ

it (flip-flo
be done wi

-

-

OGIC;

-
F flip_flop

ND clk='1'

ode is inh

uential).

ps, for ex
ith a PROC

p IS

') THEN

erently co

xample) we
CESS.

oncurrent (

e have to

(contrary

‘‘force’’

11

19 END PROCESS;
20 END ARCHITECTURE;
21 --

Lines 2–3: Because the data typeSTD_LOGIC is employed in this design,
the package std_logic_1164 must be included.

Lines 5–8: Second part (ENTITY) of the code, in this example named flip-
flop.

Lines 10–20: Third part (ARCHITECTURE) of the code, here with the same
name as the entity.

Line 6: Input ports, all of type STD_LOGIC.
Line 7: Output port, also of type STD_LOGIC.

Lines 12–19: Code part of the architecture (starts after the word BEGIN). In
this case, the code contains just a PROCESS, needed because we want to
implement a sequential (clocked) circuit (code inside a process is executed
sequentially).

Line 12: Note that two signals (clk, rst) are included in the process’s
sensitivity list (the process is run whenever any of these signals change).

Lines 14–15: If rst goes to '1', the flip-flop is reset, regardless of clk.

Lines 16–17: If rst is not active, plus clk has changed (an EVENT occurred
on clk), and such an event was a rising edge (clk = '1'), then the input signal
(d) is stored into the flipflop (q <= d).

Lines 15 and 17: The operator "<=" is used to assign a value to a SIGNAL
(all ports are signals by default). In contrast, ":=" would be used for a
VARIABLE.

Lines 1, 4, 9, and 21: Employed to better organize the code.

Exam

 ENTIT
 P
 q
 END e

 ARCH
 S
 BEGI
 t
 P
 B

 E
 END e

Data T

CONS

As the

CONST

Examp

ple: DFF

TY examp
PORT (a
q: OUT B
example;

HITECTU
SIGNAL t
N
temp <= a
PROCES
BEGIN

IF (
END

END PRO
example;

Types

STANT

e name sa

TANT con

ple:

 plus NA

ple IS
a, b, clk: I
BIT);

URE exam
temp : BI

a NAND b
SS (clk)

clk'EVEN
D IF;
OCESS;

ays, it is a

nstant_nam

AND Gate

N BIT;

mple OF e
T;

b;

NT AND c

an object

me: consta

12

e

example I

clk='1') TH

whose va

ant_type :=

IS

HEN q<=t

alue cann

= constant

temp;

not be ch

t_value;

anged

13

CONSTANT bits: INTEGER := 16;
CONSTANT words: INTEGER := 2**bits;
CONSTANT flag: BIT := '1';
CONSTANT mask: BIT_VECTOR(1 TO 8) := "00001111";

CONSTANT can be declared in the declarative part of ENTITY,
ARCHITECTURE, PACKAGE, PACKAGE BODY, BLOCK, GENERATE,
PROCESS, FUNCTION, and PROCEDURE (the last two are called subprograms).

Keyword OTHERS
OTHERS is a useful keyword for making assignments. It represents all index
values that were left unspecified.

Examples
--
The constant below is a = "000000".
CONSTANT a: BIT_VECTOR(5 DOWNTO 0) := (OTHERS=>'0');
--
The next constant is b = "01111111" (index 7 gets '0', the others, '1').
CONSTANT b: BIT_VECTOR(7 DOWNTO 0) := (7=>'0', OTHERS=>'1');
--
The signal below is c = "01100000" ("|" means "or").
SIGNAL c: STD_LOGIC_VECTOR(1 TO 8) := (2|3=>'1', OTHERS=>'0');
--
The variable below is d = "1111111100000000".
VARIABLE d: BIT_VECTOR(1 TO 16) := (1 TO 8=>'1', OTHERS=>'0');

SIGNAL
SIGNAL serves to pass values in and out of the circuit, as well as between its
internal units. In other words, a signal represents circuit wires.

Signal declarations are not allowed in sequential code (i.e., PROCESS and
subprograms), but signals can be used there

SIGNAL signal_name: signal_type [range] [:= default_value];

Examples:

14

SIGNAL enable: BIT <= '0';
SIGNAL temp: BIT_VECTOR(3 DOWNTO 0);
SIGNAL byte: STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL count: NATURAL RANGE 0 TO 255;

To assign a value to a SIGNAL, the proper operator is "<=", while for
CONSTANT or VARIABLE (or for default values) it is ":=". For example, "enable
<= '1 ; '”

VARIABLE
Contrary to CONSTANT and SIGNAL, VARIABLE represents only local
information because it can only be seen and modified inside the sequential unit
(i.e., PROCESS or subprogram) where it was created.

VARIABLE variable_name: variable_type [range] [:= default_value]

VARIABLE flip: STD_LOGIC := '1';
VARIABLE address: STD_LOGIC_VECTOR(0 TO 15);
VARIABLE counter: INTEGER RANGE 0 TO 127;

Data-Type Libraries and Packages
The fundamental packages for dealing with binary logic and with
integer numbers are:

Package standard (expanded in VHDL 2008)
Package std_logic_1164 (expanded in VHDL 2008)
Package numeric_bit (expanded in VHDL 2008)
Package numeric_std (expanded in VHDL 2008)
Package std_logic_arith (shareware, nonstandard)
Package std_logic_unsigned (shareware, nonstandard)
Package std_logic_signed (shareware, nonstandard)
Package textio (expanded in VHDL 2008)
Package numeric_bit_unsigned (introduced in VHDL 2008)
Package numeric_std_unsigned (introduced in VHDL 2008)

Package standard

It defines the following data types:

15

 Bit-related (synthesizable): BIT, BIT_VECTOR, BOOLEAN
 Integer-related (synthesizable): INTEGER, NATURAL, POSITIVE
 Character-related (synthesizable): CHARACTER, STRING
 Floating-point (limited synthesis support): REAL
 Time-related (not for synthesis): TIME, DELAY_LENGTH

In VHDL 2008, the following was added to the package standard:
New types: BOOLEAN_VECTOR, INTEGER_VECTOR, REAL_VECTOR,
TIME_VECTOR.

Examples:

SIGNAL x: BIT;
-- x is declared as a one-digit signal of type BIT.

SIGNAL y: BIT_VECTOR (3 DOWNTO 0);
-- y is a 4-bit vector, with the leftmost bit being the MSB.

SIGNAL w: BIT_VECTOR (0 TO 7);
-- w is an 8-bit vector, with the rightmost bit being the MSB.

Based on the signals above, the following assignments would be legal (to assign a
value to a signal, the ‘‘<=’’ operator must be used):

x <= '1';
-- x is a single-bit signal (as specified above), whose value is '1'. Notice that single
quotes (' ') are used for a single bit.

y <= "0111";
-- y is a 4-bit signal (as specified above), whose value is "0111". (MSB='0').
Notice that double quotes (" ") are used for vectors.

w <= "01110001";
-- w is an 8-bit signal, whose value is "01110001" (MSB='1').

Package std_logic_1164

The main types defined in that package are:

STD_U
STD_L

For ST
8-value

‘X’ For
‘0’ For
‘1’ For
‘Z’ Hig
‘W’ W
‘L’ We
‘H’ We
‘–’ Don

FOR S
in the I

 (‘U’, ‘

Indeed
conflic

ULOGIC,
LOGIC, ST

TD_LOGIC
ed logic sy

rcing Unk
rcing Low
rcing High
gh impeda

Weak unkno
eak low
eak high
n’t care

STD_ULO
IEEE 1164

X’, ‘0’, ‘1

, if any
cting logic

STD_ULO
TD_LOGI

C (and ST
ystem intro

known (syn
(synthesiz

h (synthesi
ance (synth
own

OGIC (STD
4 standard

1’, ‘Z’, ‘W

two std_
levels are

OGIC_VE
IC_VECT

D_LOGIC
oduced in

nthesizabl
zable logic
izable logi
hesizable t

D_ULOGI
d (U means

W’, ‘L’, ‘H

_logic sign
e automatic

16

ECTOR
TOR

C_VECTO
the IEEE

le unknow
c ‘1’)
ic ‘0’)
tri-state bu

IC_VECT
s unresolv

’, ‘–’).

nals are
cally resol

OR):
1164 stan

wn)

u¤er)

TOR): 9-le
ved)

connected
lved accor

ndard.

evel logic

d to the
rding to Ta

system in

same no
able below

ntroduced

de, then
w

17

Package numeric_std

The types below are defined in it:

UNSIGNED (based on STD_LOGIC)
SIGNED (also based on STD_LOGIC)

Examples:

x0 <= '0'; -- bit, std_logic, or std_ulogic value '0'

x1 <= "00011111"; -- bit_vector, std_logic_vector, std_ulogic_vector, signed, or
unsigned

x2 <= "0001_1111"; -- underscore allowed to ease visualization

x3 <= "101111" -- binary representation of decimal 47

x4 <= B"101111" -- binary representation of decimal 47

x5 <= O"57" -- octal representation of decimal 47

x6 <= X"2F" -- hexadecimal representation of decimal 47

n <= 1200; -- integer

m <= 1_200; -- integer, underscore allowed

Example: Legal and illegal operations between data of di¤erent types.

SIGNAL a: BIT;
SIGNAL b: BIT_VECTOR(7 DOWNTO 0);
SIGNAL c: STD_LOGIC;
SIGNAL d: STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL e: INTEGER RANGE 0 TO 255;
...
a <= b(5); -- legal (same scalar type: BIT)

18

b(0) <= a; -- legal (same scalar type: BIT)

c <= d(5); -- legal (same scalar type: STD_LOGIC)

d(0) <= c; -- legal (same scalar type: STD_LOGIC)

a <= c; -- illegal (type mismatch: BIT x STD_LOGIC)

b <= d; -- illegal (type mismatch: BIT_VECTOR x STD_LOGIC_VECTOR)

e <= b; -- illegal (type mismatch: INTEGER x BIT_VECTOR)

e <= d; -- illegal (type mismatch: INTEGER x STD_LOGIC_VECTOR)

User-Defined Data Types

TYPE integer IS RANGE -2147483647 TO +2147483647;
-- This is indeed the pre-defined type INTEGER.

TYPE natural IS RANGE 0 TO +2147483647;
-- This is indeed the pre-defined type NATURAL.

TYPE my_integer IS RANGE -32 TO 32;
-- A user-defined subset of integers.

TYPE student_grade IS RANGE 0 TO 100;
-- A user-defined subset of integers or naturals.

User-defined enumerated types:
TYPE bit IS ('0', '1');
-- This is indeed the pre-defined type BIT

TYPE my_logic IS ('0', '1', 'Z');
-- A user-defined subset of std_logic.

TYPE bit_vector IS ARRAY (NATURAL RANGE <>) OF BIT;
-- This is indeed the pre-defined type BIT_VECTOR.
-- RANGE <> is used to indicate that the range is unconstrained.
-- NATURAL RANGE <>, on the other hand, indicates that the only

19

-- restriction is that the range must fall within the NATURAL
-- range.

TYPE state IS (idle, forward, backward, stop);
-- An enumerated data type, typical of finite state machines.

TYPE color IS (red, green, blue, white);
-- Another enumerated data type.

Subtypes

A SUBTYPE is a TYPE with a constraint. The main reason for using a subtype
rather than specifying a new type is that, though operations between data of
different types are not allowed, they are allowed between a subtype and its
corresponding base type.

SUBTYPE natural IS INTEGER RANGE 0 TO INTEGER'HIGH;
-- As expected, NATURAL is a subtype (subset) of INTEGER.

SUBTYPE my_logic IS STD_LOGIC RANGE '0' TO 'Z';
-- Recall that STD_LOGIC=('X','0','1','Z','W','L','H','-').
-- Therefore, my_logic=('0','1','Z').

SUBTYPE my_color IS color RANGE red TO blue;
-- Since color=(red, green, blue, white), then
-- my_color=(red, green, blue).

SUBTYPE small_integer IS INTEGER RANGE -32 TO 32;
-- A subtype of INTEGER.

Example: Legal and illegal operations between types and subtypes.

SUBTYPE my_logic IS STD_LOGIC RANGE '0' TO '1';
SIGNAL a: BIT;
SIGNAL b: STD_LOGIC;
SIGNAL c: my_logic;
...
b <= a; --illegal (type mismatch: BIT versus STD_LOGIC)
b <= c; --legal (same "base" type: STD_LOGIC)

Arrays

Arrays
(1D), tw

They
synthes

TYPE

SIGNA

Examp

TYPE

TYPE

SIGNA

s

are collec
wo-dimen

can also
sizable.

type_nam

AL signal_

ple:

row IS AR

matrix IS

AL x: matr

ctions of o
nsional (2D

be of h

me IS ARR

_name: typ

RRAY (7

ARRAY

rix; -- 1Dx

objects of t
D), or one-

higher dim

RAY (speci

pe_name [

DOWNTO

(0 TO 3) O

x1D signal

20

the same ty
-dimension

mensions,

ification) O

:= initial_

O 0) OF S

OF row; --

l

ype. They
nal-by-one

, but the

OF data_t

_value];

TD_LOG

- 1Dx1D a

y can be on
e-dimensio

en they a

type;

GIC; -- 1D

array

ne-dimens
onal (1Dx

are gener

array

ional
x1D).

rally not

