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Shared Variable 

When declared as shared, a variable can be accessed by more than one sequential 

code and also by concurrent code, though only one sequential unit should modify 

its value.  

Additionally, the value of a shared variable can be passed to a signal in an 

assignment made outside the sequential code. For the carry ripple adder shown 

below a and b are the input vectors to be added, cin is the carry-in bit, s is the sum 

vector, and cout is the carry-out bit. 

Example: Counter with SHARED VARIABLE 

Design a 00-to-99 counter employing shared variables for both digits. 

Solution: 

 

The code below implements a circuit that counts from 00 to 99 and then 

automatically restarts from 00. 

 

Even though a single process would do, two were employed in order to illustrate 

the use of shared variables (temp1 and temp2, declared in line 8).  

 

Note that each variable is modified by only one process ( proc1 for temp1, proc2 

for temp2) and that the passing of their values to signals can be done outside the 

processes (lines 35–36). 

 

1 ------------------------------------------------------ 

2 ENTITY counter_with_sharedvar IS 

3  PORT (clk: IN BIT; 

4     digit1, digit2: OUT INTEGER RANGE 0 TO 9); 

5 END ENTITY; 

6 ------------------------------------------------------ 

7 ARCHITECTURE counter OF counter_with_sharedvar IS 

8   SHARED VARIABLE temp1, temp2: INTEGER RANGE 0 TO 9; 

9 BEGIN 

10 ---------------------------------- 

11 proc1: PROCESS (clk) 

12  BEGIN 

13   IF (clk'EVENT AND clk='1') THEN 
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14    IF (temp1=9) THEN 

15     temp1 := 0; 

16    ELSE 

17     temp1 := temp1 + 1; 

18    END IF; 

19   END IF; 

20  END PROCESS proc1; 

21 ---------------------------------- 

22 proc2: PROCESS (clk) 

23 BEGIN 

24   IF (clk'EVENT AND clk='1') THEN 

25    IF (temp1=9) THEN 

26     IF (temp2=9) THEN 

27      temp2 := 0; 

28     ELSE 

29      temp2 := temp2 + 1; 

30     END IF; 

31    END IF; 

32   END IF; 

33 END PROCESS proc2; 

34 ---------------------------------- 

35  digit1 <= temp1; 

36  digit2 <= temp2; 

37 END ARCHITECTURE; 

38 ------------------------------------------------------ 

 

Example: DFF with q and qbar #1 

 

We want to implement the DFF. This DFF has reset and the qbar. The presence of 

qbar will help understand how an assignment to a SIGNAL is made (recall that a 

PORT is a SIGNAL by default). 
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1 ---- Solution 1: not OK --------------- 

2 LIBRARY ieee; 

3 USE ieee.std_logic_1164.all; 

4 --------------------------------------- 

5 ENTITY dff IS 

6  PORT ( d, clk: IN STD_LOGIC; 

7      q: BUFFER STD_LOGIC; 

8      qbar: OUT STD_LOGIC); 

9 END dff; 

10 --------------------------------------- 

11 ARCHITECTURE not_ok OF dff IS 

12 BEGIN 

13  PROCESS (clk) 

14   BEGIN 

15    IF (clk'EVENT AND clk='1') THEN 

16     q <= d; 

17     qbar <= NOT q; 

18    END IF; 

19 END PROCESS; 

20 END not_ok; 

21 --------------------------------------- 

 

1 ---- Solution 2: OK ------------------- 

2 LIBRARY ieee; 

3 USE ieee.std_logic_1164.all; 

4 --------------------------------------- 

5 ENTITY dff IS 

6  PORT ( d, clk: IN STD_LOGIC; 

7                      q: BUFFER STD_LOGIC; 

8                qbar: OUT STD_LOGIC); 

9 END dff; 

10 --------------------------------------- 

11 ARCHITECTURE ok OF dff IS 

12 BEGIN 

13  PROCESS (clk) 

14   BEGIN 

15      IF (clk'EVENT AND clk='1') THEN 

16        q <= d; 

17     END IF; 

18  END PROCESS; 

19 qbar <= NOT q; 

20 END ok; 

21 --------------------------------------- 
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Comments: 

In solution 1, the assignments q<=d (line 16) and qbar<=NOT q (line 17) are both 

synchronous, so their new values will only be available at the conclusion of the 

PROCESS. This is a problem for qbar, because the new value of q has not 

propagated yet.  

 

Therefore, qbar will assume the reverse of the old value of q. In other words, the 

right value of qbar will be one clock cycle delayed, thus causing the circuit not to 

work correctly. 

 

In solution 2, we have placed qbar<=NOT q (line 30) outside the PROCESS, thus 

operating as a true concurrent expression. 

 

Example: Bad versus Good Multiplexer 

In this example, we will implement the multiplexer. This is, indeed, a classical 

example regarding the choice of a SIGNAL versus a VARIABLE. 

 

1 -- Solution 1: using a SIGNAL (not ok) -- 

2 LIBRARY ieee; 

3 USE ieee.std_logic_1164.all; 

4 ----------------------------------------- 

5 ENTITY mux IS 

6  PORT ( a, b, c, d, s0, s1: IN STD_LOGIC; 

7      y: OUT STD_LOGIC); 

8 END mux; 

9 ----------------------------------------- 

10 ARCHITECTURE not_ok OF mux IS 

11 SIGNAL sel : INTEGER RANGE 0 TO 3; 

12 BEGIN 

13  PROCESS (a, b, c, d, s0, s1) 

14   BEGIN 

15    sel <= 0; 

16    IF (s0='1') THEN sel <= sel + 1; 

17    END IF; 

18    IF (s1='1') THEN sel <= sel + 2; 

19    END IF; 

20   CASE sel IS 

21    WHEN 0 => y<=a; 

22    WHEN 1 => y<=b; 
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23    WHEN 2 => y<=c; 

24    WHEN 3 => y<=d; 

25  END CASE; 

26  END PROCESS; 

27 END not_ok; 

28 ----------------------------------------- 

 

 

Comments: 

A common mistake when using a SIGNAL is not to remember that it might require 

a certain amount of time to be updated.  

 

Therefore, the assignment sel <= sel + 1 in the first solution (line 16) will result in 

one plus whatever value had been previously propagated to sel, for the assignment 

sel <= 0 (line 15) might not have had time to propagate yet. 

 

The same is true for sel <= sel + 2 (line 18). This is not a problem when using a 

VARIABLE, for its assignment is always immediate. 

 

A second aspect that might be a problem in solution 1 is that more than one 

assignment is being made to the same SIGNAL (sel, lines 15, 16, and 18), which 

might not be acceptable. 

 

Generally, only one assignment to a SIGNAL is allowed within a PROCESS, so the 

software will either consider only the last one (sel <= sel + 2 in solution 1) or 

simply issue an error message and stop compilation. Again, this is never a problem 

when using a VARIABLE. 

 

1 -- Solution 2: using a VARIABLE (ok) ---- 

2 LIBRARY ieee; 

3 USE ieee.std_logic_1164.all; 

4 ----------------------------------------- 

5 ENTITY mux IS 

6  PORT ( a, b, c, d, s0, s1: IN STD_LOGIC; 

7      y: OUT STD_LOGIC); 

8 END mux; 

9 ----------------------------------------- 

10 ARCHITECTURE ok OF mux IS 

11  BEGIN 

12  PROCESS (a, b, c, d, s0, s1) 
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13   VARIABLE sel : INTEGER RANGE 0 TO 3; 

14  BEGIN 

15   sel := 0; 

16   IF (s0='1') THEN sel := sel + 1; 

17   END IF; 

 

18   IF (s1='1') THEN sel := sel + 2; 

19   END IF; 

20  CASE sel IS 

21   WHEN 0 => y<=a; 

22   WHEN 1 => y<=b; 

23   WHEN 2 => y<=c; 

24   WHEN 3 => y<=d; 

25 END CASE; 

 

Number of Registers 

 

We will discuss the number of flip-flops inferred from the code by the compiler.  

 

The purpose is not only to understand which approaches require less registers, but 

also to make sure that the code does implement the expected circuit. 

 

A SIGNAL generates a flip-flop whenever an assignment is made at the transition 

of another signal; that is, when a synchronous assignment occurs. 

 

Such assignment, being synchronous, can only happen inside a PROCESS, 

FUNCTION, or PROCEDURE (usually following a declaration of the type ‘‘IF 

signal’EVENT . . .’’ or ‘‘WAIT UNTIL . . .’’). 

 

A VARIABLE, on the other hand, will not necessarily generate flip-flops if its 

value never leaves the PROCESS (or FUNCTION, or PROCEDURE). However, if 

a value is assigned to a variable at the transition of another signal, and such value is 

eventually passed to a signal (which leaves the process), then flip-flops will be 

inferred. 

 

A VARIABLE also generates a register when it is used before a value has been 

assigned to it. 
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Rules for Variables and Signals 

 

Rule 1: Local of Declaration 

 

SIGNAL: Can be declared in the declarative part of ENTITY, ARCHITECTURE, 

PACKAGE, BLOCK, or GENERATE. 

 

VARIABLE: Can only be declared in sequential units (PROCESS and 

subprograms). The only exception is for shared variables, which can be declared in 

the same places as SIGNAL, but should only be modified by one sequential unit. 

 

Rule 2: Scope (Local of Use) 

 

SIGNAL: Can be global (seen and modified in the whole code, including in 

sequential units). 

 

VARIABLE: Always local (seen and modified only inside the sequential unit 

where it was created). To leave that unit, its value must be passed directly or 

indirectly to a signal. The only exception is for a shared variable, which can be 

global (seen by more than one sequential unit and also by concurrent statements, 

though it should be modified only by one sequential unit). 

 

Rule 3: Update 

 

SIGNAL: A new value is only available after the conclusion of the present run of 

the process or subprogram. 

 

VARIABLE: Updated immediately, so its new value is ready to be used in the next 

line of code. 

 

Rule 4: Assignment Operator 

 

SIGNAL: Values are assigned using "<=" (example: sig <= 5;). 

 

VARIABLE: Values are assigned using ":=" (example: var := 5;). 

 

Rule 5: Multiple Assignments 

 

SIGNAL: Only one effective assignment is allowed in the whole code. 
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VARIABLE: Because its update is immediate, multiple assignments are fine. 

 

Rule 6: Inference of Registers 

 

SIGNAL: Flip-flops are inferred when an assignment to a signal occurs at the 

transition of another signal. 

 

VARIABLE: Flip-flops are inferred when an assignment to a variable occurs at the 

transition of another signal and this variable’s value is eventually passed directly or 

indirectly to a signal. 

 

 
 

Example: In the process shown below, output1 and output2 will both be stored 

(that is, infer flip-flops), because both are assigned at the transition of another 

signal (clk). 

 

PROCESS (clk) 

BEGIN 

 IF (clk'EVENT AND clk='1') THEN 

  output1 <= temp; -- output1 stored 

  output2 <= a; -- output2 stored 

END IF; 

END PROCESS; 
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Example: In the next process, only output1 will be stored (output2 will make use 

of logic gates). 

 

PROCESS (clk) 

BEGIN 

 IF (clk'EVENT AND clk='1') THEN 

  output1 <= temp; -- output1 stored 

 END IF; 

output2 <= a; -- output2 not stored 

END PROCESS; 

 

Example: In the process below, temp (a variable) will cause x (a signal) to be 

stored. 

  

PROCESS (clk) 

 VARIABLE temp: BIT; 

BEGIN 

 IF (clk'EVENT AND clk='1') THEN 

  temp <= a; 

 END IF; 

x <= temp; -- temp causes x to be stored 

END PROCESS; 

 

Example: DFF with q and qbar #2 

 

Let us consider the DFF once again. Both solutions presented below function 

properly. The difference between them, however, resides in the number of flip-

flops needed in each case. 

 

Solution 1 has two synchronous SIGNAL assignments (lines 16–17), so 2 flip-flops 

will be generated. This is not the case in solution 2, where one of the assignments 

(line 19) is no longer synchronous. 

 

 

 ---- Solution 1: Two DFFs --------------- 

2 LIBRARY ieee; 

3 USE ieee.std_logic_1164.all; 

4 ----------------------------------------- 
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5 ENTITY dff IS 

6  PORT ( d, clk: IN STD_LOGIC; 

7      q: BUFFER STD_LOGIC; 

8      qbar: OUT STD_LOGIC); 

9 END dff; 

10 ----------------------------------------- 

11 ARCHITECTURE two_dff OF dff IS 

12 BEGIN 

13  PROCESS (clk) 

14  BEGIN 

15   IF (clk'EVENT AND clk='1') THEN 

16    q <= d; -- generates a register 

17    qbar <= NOT d; -- generates a register 

18   END IF; 

19 END PROCESS; 

20 END two_dff; 

21 ----------------------------------------- 

 

 

1 ---- Solution 2: One DFF ---------------- 

2 LIBRARY ieee; 

3 USE ieee.std_logic_1164.all; 

4 ----------------------------------------- 

5 ENTITY dff IS 

6  PORT ( d, clk: IN STD_LOGIC; 

7      q: BUFFER STD_LOGIC; 

8      qbar: OUT STD_LOGIC); 

9 END dff; 

10 ----------------------------------------- 

11 ARCHITECTURE one_dff OF dff IS 

12 BEGIN 

13  PROCESS (clk) 

14   BEGIN 

15    IF (clk'EVENT AND clk='1') THEN 

16     q <= d; -- generates a register 

17    END IF; 

18  END PROCESS; 

19 qbar <= NOT q; -- uses logic gate (no register) 

20 END one_dff; 

21 ----------------------------------------- 



11 
 

Example: Counter 

 

Consider the 0-to-7 counter. 

 

                                        
1 ------ Solution 1: With a VARIABLE -------- 

2 ENTITY counter IS 

3  PORT ( clk, rst: IN BIT; 

4  count: OUT INTEGER RANGE 0 TO 7); 

5 END counter; 

6 -------------------------------------------- 

7 ARCHITECTURE counter OF counter IS 

8  BEGIN 

9  PROCESS (clk, rst) 

10   VARIABLE temp: INTEGER RANGE 0 TO 7; 

11  BEGIN 

12   IF (rst='1') THEN 

13    temp:=0; 

14   ELSIF (clk'EVENT AND clk='1') THEN 

15    temp := temp+1; 

16   END IF; 

17 count <= temp; 

18 END PROCESS; 

19 END counter; 

20 -------------------------------------------- 

 

1 ------ Solution 2: With SIGNALS only ------- 

2 ENTITY counter IS 

3  PORT ( clk, rst: IN BIT; 

4    count: BUFFER INTEGER RANGE 0 TO 7); 

5 END counter; 

6 -------------------------------------------- 

7 ARCHITECTURE counter OF counter IS 

8  BEGIN 
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9  PROCESS (clk, rst) 

10   BEGIN 

11    IF (rst='1') THEN 

12     count <= 0; 

13    ELSIF (clk'EVENT AND clk='1') THEN 

14     count <= count + 1; 

15    END IF; 

16  END PROCESS; 

17 END counter; 

18 -------------------------------------------- 

 

In the first, a synchronous VARIABLE assignment is made (lines 14–15). In the 

second, a synchronous SIGNAL assignment occurs (lines 13–14). 

 

From either solution, three flip-flops are inferred (to hold the 3-bit output signal 

count). Solution 1 is an example that a VARIABLE can indeed generate registers. 

The reason is that its assignment (line 15) is at the transition of another signal (clk, 

line 14) and its value does leave the PROCESS (line 17). 

 

Solution 2, on the other hand, uses only SIGNALS. Notice that, since no auxiliary 

signal was used, count needed to be declared as of mode BUFFER (line 4), because 

it is assigned a value and is also read (used) internally (line 14). Still regarding line 

14 of solution 2, notice that a SIGNAL, like a VARIABLE, can also be 

incremented when used in a sequential code.  

 

Finally, notice that neither in solution 1 nor in solution 2 was the std_logic_1164 

package declared, because we are not using std_logic data types in this example. 

 

Making Multiple Signal Assignments 

 

Ex: Parity detector 

 

1 ----------------NOT OK----------------------- 

2 ENTITY parity_det IS 

3 GENERIC (N: POSITIVE := 8); 

4  PORT (x: IN BIT_VECTOR(N-1 DOWNTO 0); 

5      y: OUT BIT); 

6 END ENTITY; 

7 --------------------------------------- 
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8 ARCHITECTURE not_ok OF parity_det IS 

9   SIGNAL temp: BIT; 

10 BEGIN 

11   temp <= x(0); 

12   gen: FOR i IN 1 TO N-1 GENERATE 

13   temp <= temp XOR x(i); 

14   END GENERATE; 

15 y <= temp; 

16 END ARCHITECTURE; 

17 --------------------------------------- 

 

Soln-2 (NOT-OK) 

 

7 ---------------------------- 

8 ARCHITECTURE not_ok OF ... 

9  SIGNAL temp: BIT; 

10  BEGIN 

11  PROCESS (x) 

12  BEGIN 

13   temp <= x(0); 

14   FOR i IN 1 TO N-1 LOOP 

15    temp <= temp XOR x(i); 

16   END LOOP; 

17 y <= temp; 

18 END PROCESS; 

19 END ARCHITECTURE; 

20 ---------------------------- 

 

Sol-3 (OK) 

7 ----------------------------------------- 

8 ARCHITECTURE ok OF parity_det IS 

9  SIGNAL temp: BIT_VECTOR(N-1 DOWNTO 0); 

10 BEGIN 

11  temp(0) <= x(0); 

12  gen: FOR i IN 1 TO N-1 GENERATE 

13   temp(i) <= temp(i-1) XOR x(i); 

14  END GENERATE; 

15 y <= temp(N-1); 

16 END ARCHITECTURE; 

17 ----------------------------------------- 



14 
 

Example: Shift Register 

 

We are now interested in examining what happens to the 4-stage shift register  

when different VARIABLE and SIGNAL assignments are made. 

 

        
 

1 -------- Solution 1: ----------------- 

2 ENTITY shift IS 

3  PORT ( din, clk: IN BIT; 

4      dout: OUT BIT); 

5 END shift; 

6 -------------------------------------- 

7 ARCHITECTURE shift OF shift IS 

8 BEGIN 

9  PROCESS (clk) 

10   VARIABLE a, b, c: BIT; 

11  BEGIN 

12   IF (clk'EVENT AND clk='1') THEN 

13   dout <= c; 

14   c := b; 

15   b := a; 

16   a := din; 

17   END IF; 

18  END PROCESS; 

19 END shift; 

20 -------------------------------------- 

 

In solution 1, three VARIABLES are used (a, b, and c, line 10). However, the 

variables are used before values are assigned to them (that is, in reverse order, 

starting with dout, line 13, and ending with din, line 16). Consequently, flip-flops 

will be inferred, which store the values from the previous run of the PROCESS. 
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1 -------- Solution 2: ----------------- 

2 ENTITY shift IS 

3  PORT ( din, clk: IN BIT; 

4     dout: OUT BIT); 

5 END shift; 

6 -------------------------------------- 

7 ARCHITECTURE shift OF shift IS 

8  SIGNAL a, b, c: BIT; 

9 BEGIN 

10  PROCESS (clk) 

11  BEGIN 

12   IF (clk'EVENT AND clk='1') THEN 

13    a <= din; 

14    b <= a; 

15    c <= b; 

16    dout <= c; 

17   END IF; 

18  END PROCESS; 

19 END shift; 

20 -------------------------------------- 

 

In solution 2, the variables were replaced by SIGNALS (line 8), and the 

assignments are made in direct order (from din to dout, lines 13–16). Since signal 

assignments at the transition of another signal do generate registers, here too the 

right circuit will be inferred. However, the program is not OK in this way of 

writing. 
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1 -------- Solution 3: ----------------- 

2 ENTITY shift IS 

3  PORT ( din, clk: IN BIT; 

4     dout: OUT BIT); 

5 END shift; 

6 -------------------------------------- 

7 ARCHITECTURE shift OF shift IS 

8  BEGIN 

9   PROCESS (clk) 

10    VARIABLE a, b, c: BIT; 

11   BEGIN 

12    IF (clk'EVENT AND clk='1') THEN 

13     a := din; 

14     b := a; 

15     c := b; 

16     dout <= c; 

17    END IF; 

18   END PROCESS; 

19 END shift; 

20 -------------------------------------- 

 

In solution 3, the same variables of solution 1 were employed, but in direct 

order (from din to dout, lines 13–16). Recall, however, that an assignment to a 

variable is immediate, and since the variables are being used in direct order (that is, 

after values have been assigned to them), lines 13–15 collapse into one line, 

equivalent to c := din. The value of c does leave the process in the next line (line 

16), however, where a signal assignment (dout <= c) occurs at the transition of clk.  

 

Therefore, one register will be inferred from solution 3, thus not resulting the 

correct circuit. 


