
ECE 477 LAB 8

1) In the below figure a sample Arithmetic Logic Unit (ALU) and its truth table are presented. Write down the VHDL code of this ALU from the lecture notes and do related simulations.

sel	Operation	Function	Unit
0000	y <= a	Transfer a	
0001	y <= a+1	Increment a	
0010	y <= a-1	Decrement a	
0011	y <= b	Transfer b	Arithmetic
0100	y <= b+1	Increment b	
0101	$y \le b-1$	Decrement b	
0110	y <= a+b	Add a and b	
0111	y <= a+b+cin	Add a and b with carry	
1000	y <= NOT a	Complement a	
1001	y <= NOT b	Complement b	
1010	y <= a AND b	AND	
1011	y <= a OR b	OR	Logic
1100	y <= a NAND b	NAND	
1101	y <= a NOR b	NOR	
1110	y <= a XOR b	XOR	
1111	y <= a XNOR b	XNOR	

Figure-1: An ALU design

- 2) Change the VHDL code of the previous question into a component style structure. RTL Schematic of the implementation should be seen like Figure-1. To check the implementation do related simulations.
- 3) Create a new project and do simulation in ISim Simulator. Explain its function.

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY COUNT_ONES IS
    GENERIC (N:INTEGER:=8);
    PORT ( INPUT_DATA : IN STD_LOGIC_VECTOR (N-1 DOWNTO 0);
        ONES_NUMBER : OUT INTEGER RANGE 0 TO N);

END COUNT_ONES;
```

Homework

No homework.