ECE 477 LAB 6

1) In the below figure a half adder is shown. Design the below adder and then do related simulations.

Figure-1 : A Half adder (https://en.wikipedia.org/wiki/Adder_(electronics))
2) In the below figure a full adder is shown. Design the below adder and then do related simulations. Use half adders as component.

Figure-2 : Full adder by using Half adders
(https://www.ibiblio.org/kuphaldt/electricCircuits/Digital/DIGI_9.html\#xtocid111047)
3) Design a 2 bit adder by using Full adders as component. Do related simulations.

Homework

1) Design a 3-to-8 decoder by using 2-to-4 decoders. Implement $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(1,5,6,7)$ by using this 3-to-8 Decoder.
2) Design a 4 -to- 16 decoder by using 3 -to- 8 decoders. Implement $f(x, y, z, t)=\sum(0,1,8,9,10,11)$ by using this 4-to-16 decoder.
3) Design a 8-to-1 multiplexer by using 4-to-1 multiplexers and 2-to-1 multiplexer. Implement $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(1,5,6,7)$ by using this 8 -to- 1 multiplexer.
4) Implement a 4-to-1 multiplexer by using 2-to-4 decoder and necessary logic gates.
5) Design a 16 -to- 1 multiplexer by using 8 -to- 1 multiplexers and 2 -to- 1 multiplexer. . Implement $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=\sum(0,1,8,9,10,11)$ by using this 16 -to-1 multiplexer.
