Chapter-6

How to use IP Cores

Intellectual property (IP) is a general name that covers unique creations of human intellect,
and mostly encloses copyrights, patents, and trademarks. The term IP is also valid in FPGA
implementations ,i.e. called as IP cores. IP cores are configurable black boxes that can be added
to main VHDL or Verilog based designs. Most of these cores were created by Xilinx. Some
of them are allowed to be used free of charge while some of them requires charges. Moreover,
third party IP cores also can be developed and presented to the other users with reasonable
charges.

IP cores are classified with respect to their usage areas. Some of the classes are like below

e Basic Elements
o Accumulators
o Counters
o Memory Elements
o Registers, Shifters & Pipelining
e Communication & Networking
Error Correction
Ethernet
Modulation
Networking
Serial Interfaces
Telecommunications
o Wireless
e Debug & Verification
e Digital Signal Processing
o Building Blocks
o Filters
o Transforms
o Trig Functions
o Waveform Synthesis
e Math Functions
o Adders & Subctractors
Conversions
CORDIC
Dividers
Square Root
Trig Functions.

0O O O O O O

OO O O O O

There are many other IP cores that can be added to list. Aim of this chapter is to show how to
use an [P core. A math function example, a clock manager example and a Read Only Memory
(ROM) example is going to be demonstrated in deatil throughout the chapter. It’s important to

state that Some of the IP cores aren’t valid for some FPGA chips. Artix XC7A100T should be
selected at beginning of each example below.

Example: Design a 4-bit unsigned adder circuit by using Adder/Subtracter IP Core. Simulate
the IP core based design on ISim with respect to below two sample calculations.

A3zAzA1 A
+ B3B,B:B,
Cout S3 SZ Sl SO

Solution: Step-1) As the first step to achive example’s task, create a new project and name it
as [P CORE_SAMPLE 1. Additionally, name of the main design should be “Sum_func”.
After that, Adder/Subtracter IP Core should be added to the main implementation files as a
component. Right click to the FPGA chip and click New Source.

@ File Edit View Project Source Process Tools Window Layout H

Oa y |] X|wa| »2lraR AR
Design 08 X | 3
view: @ {8 Implementation () [Simulation 4
] | Hierarchy = S
&l ® IP_CORE_SAMPLE_1 &
e I=h *. xc7al00t-1csg324 7
= \;5_] Add Source... 9
; 10
— 7
[§=] Add Copy of Source 11
Manual Compile Order 12
— 1z
M » Implement Top Module 14
a5
» | ¥Q NoProcesses Running File/Path Display » 16
{. | No single design module is sele Expand All 17
| % Design utilties Collapse All Lt
— 1)
- 4 Find... Ctrl+F 20
=) i 21
Design Properties... 22
23
24
B
& Start B3 Design _1 Files [D Libraries B
Console
.
Figure 6-1

Choose IP (CORE Generator & Architecture Wizard) and name it as “Sum_function” .
Click Next.

- New Source Wizard

@elect Source Type
Select source type, file name and its location.

[BMM File
€* ChipScope Definition and Connection File
[Implementation Constraints File

‘%" |P (CORE Generator & Architecture Wizard)
MEM File

[&] Schematic

|=] User Document

Verilog Module

] Verilog Test Fixture

' VHDL Module File name:

[y vHDL Library .
(%] VHDL Package Sum_function
Us] VHDL Test Bench Location:

§ Embedded Processor
C:\IP_CORE_SAMPLE_1\IP_CORE_SAMPLE_1\pcore_dir

Add to project

More Info Next > Cancel

Figure 6-2
Step-2) As seen in Figure 6-3, there are many IP Core classes to be used.

V4 New Source Wizard

(€5select 1P
Create Coregen or Architecture Wizard IP Core.

View by Function View by Name

“ Version AXI4 AX4-Stream AXM4-Lite Status License Vendor Library

Automotive & Industrial
@7 AXl Infrastructure

&

38
@ |77 Communication & Networking
@/ Debug & Verification

@ |7 Digital Signal Processing

& |7 Embedded Processing

|7 FPGA Features and Design

@ |77 Math Functions

B[~ Memories & Storage Elements

L
@ |7 Standard Bus Interfaces
& |77 Video & Image Processing
Search IP Catalog: Clear
[] An TP versions ["] Only IP compatible with chosen part
Please select IP
More Info < Back lext > Cancel

Figure 6-3

Adder/Subtracter core is under the class of Math Functions. Choose it and click Next.

- New Source Wizard

—
(& select IP
Create Coregen or Architecture Wizard IP Core.

View by Function View by Name

Name “ Version AXl4 AX4-Stream AXl4-Lite Status License Vendc ™
(-7 Digital Signal Processing

@7 Embedded Processing

(-7 FPGA Features and Design

7 Math Functions

7 Adders & Subtracters

‘% Adder Subtracter 11.0 Pre-Production xlin.

7 Conversions

7 CORDIC

7 Dividers

7 Floating Point

7 Linear Algebra Toolkit

7 Multipliers

7 Square Root

7/ Trig Functions v
< >

BEEHEEe8

Search IP Catalog: Clear
[] all 1P versions [] only 1P compatible with chosen part

More Info < Back Cancel

Figure 6-4
Click Finish as seen in the Figure 6-5.

- New Source Wizard n
\;-Summnry
Project Navigator will create a new skeleton source with the following spedifications.

Add to Project: Yes
Source Directory: C:\[P_CORE_SAMPLE_1\IP_CORE_SAMPLE _1\jpcore _dir
Source Type: IP (CORE Generator & Architecture Wizard)

Source Name: Sum_function. xco
Core Type: Adder Subtracter; Version: 11.0

More Info < Back Finish Cancel

Figure 6-5

Step-3) Figure 6-6 is emerged and core configuration should be done to be able use the IP core
as planned. This Figure shows the default arrengement of the core from this graphical user
interface (GUI). On the left hand side of the figure, block diagram of the core can be seen.
Inputs of the core appear on the left hand side of the diagram while outputs appear on the right
hand side of the diagram.

Lol
A

Documents View
TP Symbol

Adder Subtracter

371

Adder Subtracter

- cEN

xilinx.com:ip:c_addsub:11.0

=

Component Name

Implement using

A Input Type

B Input Type

A Input Width

B Input Width

Add Mode

Output Width

Latency Configuration

™ Constant Input

Control
W Clock Enable (CE)
I~ Carry In (C_IN)
I Synchronous Clear (SCLR)
I Synchronous Set (SSET)
I Synchronous Init (SINIT)
I™ Bypass

4

|Sum_1un:t|on

[Fbric -]
[15 Range:2..256
[15 Range:2.256

Add =

16 Range: 15..16

|Manual

Constant Value

I™ carry Out (C_ouT)

Init Value

Bypass Sense

Synchronous Set and Clear{Reset) Priority

| Latency |1

Range: 0..258

000000000000000 (Bin)

Borrow In/Out Sense

I-’«cllve Low - I

0 (Hex)
Active High ~
Reset Overric ~

< 1P Svmhal | % Information [

Aim of the example is to build 4-bit unsigned adder. Change Input type to unsigned and input
width to 4. Check for the Carry Out option to be able to observe carry of the summation result.
Moreover, set zero latency for simplicity during observation. As the configuration settings are
changed inputs and outputs change. It’s important to be aware of differences in between block

_Datasheet |

Figure 6-6

diagrams of Figure 6-6 and Figure 6-7.

generatel Cancel |

- oM

q Adder Subtracter
Documents View
1P Symbol & x »
19.9‘(. RE Adder su btraCter xilinx.com:ip:¢c_addsub:11.0
Component Name [Sum_function =
Implement using m
A Input Type [unsigned =]
B Input Type [unsignea]
A Input Width ’4_ Range: 1..256
ApD) C_ouT B Input Width ’47 Range: 1..256
= = Add Mode (add -
Output Width [+ Range:s.s
Latency Configuration ‘Manunl j Latency |!l Range: 0..258
I” Constant Input Constant Value I-JD[-[— (Bin)
Control
™ Clock Enable (CE)
™ Carry In (C_IN) ¥ Carry Out (C_OUT) Borrow In/Out Sense
™ Synchronous Clear (SCLR)

I™ Synchronous Set (SSET)

]t Symbol [J_Information |

Figure 6-7

5

I™ Synchronous Init (SINIT) Tnit Value 0 (Hex)
™ Bypass Bypass Sense Im
Synchronaus Set and Clear(Reset) Priority [Reset overric -] JLI
4| | »
<h Generate I Cancel | Help |

Each IP core has its own datasheet. When Datasheet button is clicked a pdf file will be opened
as seen in Figure 6-8. These datasheets exists for all IP cores and should be read carefully in
order to use them effectively.

= ds214_addsub.pdf - Adobe Reader — ﬂl
File Edit View Document Tools Window Help

= é’]- $/1]/0] 1 ® ® 1% |- [Fina .

Bookmarks

=] LogiCORE IP .
Adder/Subtracter v LO g I c 0 R E IP
1o a ® Adder/Subtracter v11.0
8 Introduction
"
&l Features DS214 March 1, 2011 Product Specification
] Pinout
[] CORE Generator :
Software Graphical Introduction LogICORE IP Facts Table
poer Inerface The Xilinx® LogiCORE™ IP Adder/Subtracter core Core Speclfics
& Core Use through provides LUT and single XtremeDSP™ slice add/sub Virtex-7 and Kintex-7,
CORE Generator implementations. The Adder/Subtracter module can g:si';:"“d Virtex-6, Virtex-5, Virtex-d,
15"&‘"5’9 create adders (A+B), subtracters (A-B), and | Family(® Spartan-6, SF":"“"‘G’XA-SF;:.S:"%EP’;;A-
g aﬂg&““" dynamically configurable adder/subtracters that parian- A
K] Core Use through operate on signed or unsigned data. The function can ﬁ"-“g#:c":gd User Not Applicable
System Generator be implemented in a sin.gle XtremeDSP slice or LUTs Resources® Frequency
= %] Migrating to (but currently not a hybrid of both). The module can be
Adder/Subtracter pipelined. Configuration LUTs | FFs SI:I"gfl EIAOICA: Max. Freq.
v11.0 from Earlier | : 1

Figure 6-8

Click Generate button and IP core GUI will be closed. Configuration is done. If
reconfiguration is needed double clicking to the core opens the GUI again. Adder/Subtracter
core is added to design as seen in Figure 6-9.

@ File Edit View Project Source Process Jools Window Layout Help
D2HF|.] & X|wa|s2pRrRR D2
Design +0O®X § _2-2" 5y 00000
[| View: ® {5} implementation () [Smulation) S 23 -- Uncomment th
5] | Hierarchy = 24 -- arithmetic f
[Iﬂ ﬁ IP_CORE_SAMPLE_1 = 25 ~-—use IEEE.NUME
5 €3 xcTal00t1csg324 26
i3 Ml Sum_func - Behavioral (Sum_func.vhd) 27 -- Uncomment th
r— ‘% Sum_function (Sum_function.xco) © 28 -- any Xilinx p
% 29 --library UNISI
a % 30 --use UNISIM.VC
i~ p § 31
=) % 32 entity Sum_ func
m : 33 Port (a :
adl |ET b :
35 c:
o ,t} o Brormes g j 36 end Sum_func;
L, | Processes: Sum_function — 37
2| @ Y CORE Genesator 38 architecture Be
— 39
= 40 begin
= 41
42
43 end Behavioral;
44
45
<
& Start | @2 Design U] Fies | [Liraries] Design Summary B

Console
1) INFO:HDLCompiler:1061 - Parsing VHDL file "C:/IP CORE_SRMPLE 1/IP_CORE !
J) INFO: ProjectMgmt - Parsing design hierarchy completed successfully.

Figure 6-9

Step-4) IP core is added to design but it isn’t tied to the main implementation of “Sum_func”.
6

Click View HDL Instantiation Template to be able to see port and component declarations
of the generated IP core. This feature is presented by ISE in order to rapid component
construction in main design.

Eile Edit View Project Source Process Tools Window Lay

D2EHP| _d‘b. Y X|© e = f 2R R
| Design +08&8x [
[i] |View: @ {8} implementation O [l simulation »

| | Hierarchy —
& (] IP_CORE_SAMPLE_1

—| & £3 xc7a100t-1csg324

L1 : T -B

&l)
A

P A
- %

v, |
» |) No Processes Running Ij
?t Processes: Sum_function —
‘Jf;: =] g " CORE Generator

— d Manage Cores

=) Y Regenerate Core L

— d Update Core to Lat#¥t Version

View HDL Instantiation Template
<

& Start | @2 Design | [y Fies | [Libraries E

Console

i) INFO:HDLCompiler:1061 - Parsing VHDL file "C:/IP_
JpINFO: ProjectMgmt - Parsing design hierarchy compl

Figure 6-10

Figure 6-11 shows the port and component declarations of the Adder/Subtracter IP core. As
noticed, there are two 4-bit inputs and one 4 bit summation output and one bit carry output.

) File Edit View Project Source Process JTooks Window Layout Help NEE

o2 ' oo » B RE=Eo= seir L

Design 06 X 54 ~
View: ® {8} Implementation () F smuiation N Begin Cut here for COMPONENT Declar

(5] | Hierarch 56 COMPONENT Sum_function

— ! 7 PORT -

A S IP_CORE_SAMPLE_1) S E (- N

— €3 xc7a100t-1csg324 58 a : IN STD) (3 DOWNTO 0);

I”*,]n“n Sum_func - Behavioral (Sum_func.vhd) 59 b : IN 3
¢ Sum_function (Sum_function.xco) 60 c_out

(3 DOWNTO 0) ;

L= 61 s : OUT STD OR(3 DOWNTO 0)
@ 4 62)
\ * 63 END COMPONENT;
= % 64 . "AN;,T;— 77?}[,’ -—---- End COMPONENT Declaration
m e 65
- 66
(1
» | €2 NoProcesses Running €] e
4] | Processes: Sum_function €9 Begin Cut h
- 3 CORE Generator 70 your_instance_name : Sum_function
. § Manage Cores 71 PORT MAP (
5’{: 4 Regenerate Core 72 a => a,
— Update Core to Latest Version 73 b => b,
View HDL Functional Model 74 c_out => c_out,
View HDL Instantiation Template 75 s => 35
76 ;

77 ====== Pnd ATION Template
-n =
< >
& Start B Desgn] Fles [Libraries L Design Summary (2] sum_funcvhd 2 sum_funcoon.vho)
Console 08 x

Started : "Launching ISE Text Editor to view Sum_function.vho™.

Figure 6-11

Arrange main implementation file as in PS 6-1.

library ieee;
use ieee.std_logic 1164.all;

entity Sum_func is
Port (a:in std logic vector (3 downto 0);
b :in std logic_vector (3 downto 0);
c : out std_logic vector (4 downto 0));
end Sum_func;

architecture Behavioral of Sum_func is

component Sum_function
port (
a : in std_logic_vector(3 downto 0);
b : in std_logic_vector (3 downto 0);
c_out : out std_logic;
s : out std_logic_vector (3 downto 0));
end component;

begin
ul : Sum_function
port map (

a=>a,

b=>b,

c_out =>c(4),

s => ¢(3 downto 0));
end Behavioral;

PS 6-1

When PS 6-1 is completed IP Core — which is named as “ul-Sum_function” becomes a sub

unit of the main implementation design of “Sum_func”.

@ File Edit View Project Source Process Tools Window Layout Help

P EIBFTEERICIE RN Y Y B EIPTITY:
Design »08 x| 4 3 b : in STD_LOGIC_
] | View: ® &} implementation () gff] Simulation . 7 c¢ : in STD_LOGIC_
g Hierarchy T 8 end Sum_ func;

& IP_CORE_SAMPLE_1 - 3 . .

= £3 xc7a100t-1csg324 10 architecture Behavioral of Su

o5 =8 (... Sum_func - Behavioral (Sum_func.vhd) 11
i ‘% ul - Sum_function (Sum_function.xco) w 12 COMPONENT Sum_function
g —| 13 PORT (

2] A 14 a : IN STD LOGIC_VECTOR(3
= “ 15 b : IN STE_LDGIC_'\.’ECTC‘R(3
i % 16 c_out : OUT STD_LOGIC;
¥ X6 17 s : OUT STD LOGIC_VECTOR(

0 18)i
: AL Q@ 15 END COMPONENT;

?t No single design module is selected. O 20
9¢ | @3 Design Utilities —| 21 begin
— 22
Ert 23 wul : Sum_function
= 24 PORT MAP (

- 25 a => a,

26 b => b,
27 c_out => c(4),
e R N T P
<
— Ctart | E® i | % Cilae | PN deariae b Nacimm Cwnmmmro (o af Asdal M= e

Step-5) Implementation is completed. Now, simulation scenario should be set. Open a VHDL

Figure 6-12

Test Bench file and named it as “Summation_func_TB” and click Next.

- New Source Wizard

@electSourceTvpe

Select source type, file name and its location.

(%) BMM FFile
€= ChipScope Definition and Connection File
[Implementation Constraints File
o IP (CORE Generator & Architecture Wizard)
(%] MEM File
[0] Schematic
|=] User Document
Verilog Module
IM] Verilog Test Fixture

(g VHDL Module File name:
[y VHDL Library ;
VHDL Package Summation_func_TB

E VHDL Test Bench Location:
s Embedded Processor

C:\IP_CORE_SAMPLE_1\IP_CORE_SAMPLE_1

Add to project

More Info Next > Cancel

Figure 6-13

In the next window of Figure 6-14, associate test bench with main implementation file of
“Sum_func” and click Next.

DA .4 obx|lwe| 2,38 ,RB[B0 sR[(PCL[Q
Design 0 : . = I
[| ew: ® g O - - New Source Wizard -
5] | Hierarchy (€hssociate Source
| wcore sampie 1 Select a source with which to assodate the new source,
& [x7al00t+1csg324
S| S [Sum.func- Behmionl Gum funch)
: J ul - Sum_function (Sum_function.xco) Sum _function
-
a
<
¥
| £ NoProcesses Running
P4 | No single design module is selected.
P¢| @ @ Design Utilities
£

Start | @3 Desgn () Fes | [0 Lbrares

More Info <Back hext > Cancel
<

[Consde @ Ervors | I\ Wamings | @ Findin Fies Resuts

Figure 6-14

Arrange test bench as in PS 6-2.

10

library ieee;
use ieee.std_logic_1164.all;

entity Summation_func TB is
end Summation_func TB;

architecture behavior of Summation func TB is
component Sum_func
port(
a:in std_logic_vector(3 downto 0);
b:in std_logic_vector(3 downto 0);
c : out std logic vector(4 downto 0)
);
end component;
--Inputs
signal a : std_logic_vector(3 downto 0) := (others =>"'0");
signal b : std_logic_vector(3 downto 0) := (others =>'0");
--Outputs
signal ¢ : std_logic_vector(4 downto 0);

begin
uut: Sum_func port map (
a=>a,
b=>b,
c=>c¢
)
stim_proc: process
begin
a<="0001"; b<="0010";
wait for 100 ns;
a<="1001"; b<="0111";
wait for 100 ns;
end process;
end;

PS 6-2

Figures 6-15 and 6-16 shows two different summation operations. As a result, Adder Subtracter
block is used successfully.

Name
g al3:0
0§ b3:0
B 0

Value

1001 { 0001 h{ 1001 i 0001 h 4 1001
0111 { 0010 b 0111 X 0010 b 0111
10000 { 00011 p 10000 h{ 00011 h 10000

Figure 6-15

11

Name Value

B a0 0001 { 0001 X 1001 X 0001 pid 1001
B b3:0] 0010 { 0010 i 0111) 0010 X 0111
B ca:0 00011 { 00011 i 10000 h{ 00011 X 10000

Figure 6-16

Example: Increase the clock rate of the FPGA from 100 MHz to 300 MHz. Observe the result
in ISim.

Solution: Step-1) Open a new project and create a main VHDL design, name it as
“Clock Manager”. This design should have an input port for 100 MHz clock and a output port
for 300 MHz clock signal. Clocking Wizard IP core is suitable for such an aim. Add a new
source as represented in Figure 6-2 and name it as “clock_manager core”. After typing core
name click Next. Click View By Name option in the window as seen in Figure 6-17 and
choose Clocking Wizard IP core. Click Next.

Clocking Wizard inherits choices of Phase Locked Loop (PLL) and Mixed Mode Clock
Manager (MMCM). The PLL is an analog clock management cell that can generate different
phases of clock, does clock division and de-skew a clock. Moreover, it can generate different
frequencies at the same time and has better jitter performance with respect to digital clock
manager (DCM). MMCM cell is a simply PLL cell that is modified with DCM features. Since
DCM has more precisie phase shifting ability, analog and digital managers are used together.

- New Source Wizard

(€ select 1P
Create Coregen or Architecture Wizard IP Core.

View by Function View by Name

Name Version AXI4 AXI4-Stream AXI4-Lite St
4 Chroma Resampler 3.00.a AX|4-Stream AXI4-Lite Pn
£ CIC Compiler 20 Pri
‘ CIC Compiler 3.0 AX|4-Stream Pri

\ LloCk Forwarding / board eske M 1

<

A g

¢ Clock Switching with Two DCM_SPs .

‘% Clocking Wizard 3.6 Py

% Color Correction Matrix 5.00.2 AX4-Stream AXM4-Lite Pn
% Color Filter Array Interpolation

% Color Filter Array Interpolation 6.00.a AX|4-Stream AXM4-Lite Pn
4] Complex Multiplier 3.1 Prv
< >
Search IP Catalog: Clear
[] All 1P versions [] only 1P compatible with chosen part

More Info < Back Next > Cancel

Figure 6-17
12

Clocking Wizard core includes six pages for configuration. GUI from Figure 6-18 to 6-21
shows required settings for the example’s aim. Since Nexys 4 DDR board has 100 MHz
oscillator, check the primary input clock value as seen in below Figure 6-18. Click Back and
Next buttons to pass from page to page.

Documents View
P Symbol

Clocking Wizard

CLKIN cLk_ouT

LogiC P Clocking Wizard

- oEE

e comzip:clk_wiz:3.6

Clocking Featu |

Component name: [clock_manager_core

Clocking Features:

W Frequency synthesis

I™ Spread Spectrum

¥ Phase alignment (known phase relationship to input dock)

™ Minimize power

™ Dynamic phase shift

I™ Dynamic reconfiguration (in system output freq modification)
Jitter Optimization

& Balanced
 Minimize output jitter (low clock jitter filtering)
" Maximize input jitter filtering (allow larger input jitter)

/ Input Clo

Primitive TInput Jitter
& MMCMEZ ADV C PULE2 ADV | @ Ul ©

% 1P Symbol | | Resource Estimation

Input Clock Information
Freq (MHz]
Input Clock ua-m "::dhlp Input Titter Source
| || prmey | 100000 10.000-800000 | 0010 Single ended clock capable pin -j
(- | ;lﬂ
H| Datasheet < Back 1076) Hea> | Generate | concel | nep |

Figure 6-18

Arrange requested output frequency to 300 MHz liken in Figure 6-19.

Documents View
TP Symbol

Clocking Wizard

CLKINY CLK_OUT!

RESET-

LOCKED

=] | togiC P Clocking Wizard

The phase is calculated relative to the active input clock.

| [The requested duty cycle for the 1st output clock |

Output Clock Output Freq (MHz) Phase (degrees) |
Requested Actual | Requested Actual Requested Actual

CLK_OUT1 300.000 | 300.000 0,000 0,000
™ cw_out2 100.000 N/A 0.000 N/A
™ ck_out3 100.000 N/A 0.000 N/A
r CLK_OuT4 100.000 N/A 0.000 N/A
™ ck_ouTs 100.000 N/A 0.000 NA
™ CLK_ouTé 100.000 N/A 0.000 N/A
™ ck_out7 100.000 N/A 0.000 N/A

- o

wdline com:ip:clk_wiz:3.6

Outpu™

Cloc

Setting

DutyCyde(%) | l use
Fine Ps

50.000 50.0 |BUFG j r
1

50.000 N/A [BUFG _-] r
0000 | WA |surc _J r
50.000 N/A |BUFG J r
50.000 wa |eure j r
50,000 N/A BUFG j r

|

I 1P symbol [| Resource Estimation

< Back IPagezafﬁ Next> | Generate

Cancel | Help I

Figure 6-19

13

Reset and Locked features can be added to the design. Click on the check boxes to set them.
Reset port is the input of the core while Locked is shown as output of the core in Figure 6-20.
Locked output will be logic-1 when input and output clock signals are phase aligned.

q Clocking Wizard -0
Documents View
IP Symbol & x P . .
= WC‘ ClOCKIng w'zard xilime.com:ip:clk_wiz:3.6
LK Nt cLk_oum .
Optional Inputs / Outputs Clock Feedback Source /0|
& Automatic control on-chip Feedb
12
gy © Automatic control off-chip
¥ LOCKED " User-controlled on-chip
" User-controlled off-chip
I™ INPUT_CLK_STOPPED Clock Feedback Signaling
I~ POWER_DOWN & Single-ended
REsET
I CLKFBSTOPPED Differential
LoCKED - -
< | »
! =
% 1P Symbol [¥ Resource Estimation | L]“”l <Back |Page3of6 MNext> Generate | Cancel I Help J

Figure 6-20

Don’t change anything in page 4 and 5. Figure 6-21 shows the last page. This page shows the
multiplier and divider settings to reach 300 MHz clock from 100 MHz. Multiplier coefficient
is set as 10.125 while divider is set to 3.375 where

10.125

100MHz * = 300 MHz.
3.375

q Clocking Wizard -0
Documents View
1P Symbol 8 x = R N
= W ic v i CIQCklng W|zard sdlinx.com:ip:clk_wiz:3.6
Divide | Mult | CLKDUTO CLKOUT1 | CLKOUTZ | CLKOUT3 | CLKOUT4 CLKOUTS | CLKOUTG |
Counter Counter Divider Divider Divider | Divider = Divider Divider = Divider
1| 10125 | 3375 | off off | off off off off
Generated files
File Name Description
clock_manager_core. (v | vhd) Verilog or VHDL clocking network source
clock_manager_core. (veo | vho) Verilog or VHDL instantiation template
clock_manager_core.uct Core constraints file
clock_manager_core/clk_wiz_readme.bd README file for the core
clock_manager_core.xco (CORE Generator file used to recreate core
dock_manager_core_flist.ot Synthesis tools integration file for the core
clock_manager_core_xmdf.tcl Project Navigator integration file for the core
dock_manager_core/doc Directory for documentation delivered with the core
clock_manager_core/example_design Directory for synthesizable example design
clock_manager_core/implement Directory for files to implement the example design
clock_manager_core/simulation Directory tree for simulatable test bench and control
mE | | v
4 1PSymbol [§_Resource Estimation | _] T <Back |PageGof6 New Generate | cancel | e |

Figure 6-21
14

Configuration is done. Click Generate button.

Step-2) Arrange the main code as given in PS 6-3.

library ieee;
use ieee.std_logic_1164.all;

entity Clock Manager is
Port (clk 100MHz,reset : in std_logic;
clk 300MHz.clock locked :out std_logic
)i
end Clock Manager;

architecture Behavioral of Clock Manager is
component clock manager core
port
(
CLK IN1 :in std_logic;
CLK OUTI : out std logic;

RESET :in std_logic;
LOCKED :out std logic
)

end component;
begin

ul: clock manager core
port map
(CLK _IN1 =>clk 100MHz,
CLK OUT1 => clk 300MHz,
RESET => reset,
LOCKED => clock locked);
end Behavioral;

PS 6-3

Step-3) VHDL implementation is completed. Now simulation can be done. Use PS 6-4 for
simulation. Open a VHDL Test Bench file and named it as “Clock_Manager TB”.

15

library ieee;
use ieee.std_logic_1164.all;

entity Clock Manager TB is
end Clock Manager TB;

architecture behavior of Clock Manager TB is

component Clock Manager
port(
clk 100MHz : in std_logic;
RESET :in std_logic;
clock locked : out std logic;
clk 300MHz : out std_logic
);
end component;
--Inputs
signal clk_ 100MHz : std_logic :='0";
signal RESET : std_logic :='0";
--Outputs
signal clock locked : std_logic;
signal clk 300MHz : std_logic;
-- Clock period definitions
constant clk 100MHz_period : time := 10 ns;
begin

uut: Clock Manager port map (
clk 100MHz => clk_100MHz,
RESET => RESET,
clock locked => clock locked,
clk 300MHz => clk_ 300MHz);
clk 100MHz_process :process
begin
clk 100MHz <="'0";
wait for clk 100MHz_ period/2;
clk 100MHz <="1";
wait for clk 100MHz period/2;
end process;
stim_proc: process
begin
reset <="'1";
wait for 100 ns;
reset <="'0";
wait;
end process;
end;

PS 6-4

16

Figure 6-22 shows the result of the simulation. Phases of 100 MHz and 300 MHz clocks
become same when clock locked becomes ‘1’ at approximately at 1,3 us.

1,318.690 ns
Name Value
& dk_100mnz 1 LA A A A A A A A AL A AL L A LU i
Uy reset 0 :
l§ clock_locked 1 D
I clk_300mhz 1 WWMWWMWWMWWWWWW
§ ck_100mhz_period|| 10000 ; 10000 ps

Figure 6-22

Figure 6-23 demonstrates a zoomed version of the resulting waves. In this figure, period of the
output is measured by using cursor feature of the ISim. Period of 300 MHz clock output is
approximately 3.3 ns. This result shows that Clocking Wizard IP core is used correctly.

1,320.057 ns 1,323.387 ns
'

Name Value
1§ dk_100mhz|| o
1§ reset i o

1§ clock_locke| 1
L dk_300mhz|| o

1§ dk_100mhz 10000 ps | H 10000 gs

X1: 1,320,057 ns X2: 1,323.387ns AX: -3.330ns

Figure 6-23

Example: Design a ROM that hold the values from 0 to 15, in 4-bit format. Read and show the
values of ROM via simulation on ISim.

Solution: Step-1) Open a new project and create a main VHDL design, name it as
“ROM_Usage”. Add a new source as represented in Figure 6-2 and name it as “ROM_core”.
After typing core name click Next. Choose Distributed Memory Generator IP core as seen
in Figure 6-24. Click Next.

17

- New Source Wizard

(€select 1P
Create Coregen or Architecture Wizard IP Core.

View by Function View by Name
Name “ Version AXI4 AXM4-Stream AX|4-Lite Status License Vendor Library =
=

Embedded Processing
/ FPGA Features and Design
Math Functions

AXl4 AX|4-Lite Pre-Production ilinx.com ip
Pre-Production xilink.com i
AXl4-Stream AX|4-Lite Beta 2 xilinx.com ip v
Search IP Catalog: Clear
[] All TP versions [] Only IP compatible with chosen part
More Info < Back Next > Cancel

Figure 6-24

Distributed Memory Generator IP core settings consists of three pages. In the first page,
Depth and Data Width should be set as 16 and 4, respectively. As stated in the question,
memory type should be set as ROM.

q Distributed Memory Generator - o

View Documents
1P Symbol 8 x

Distributed Memory
Generator xilinx.com:ip:dist_mem_gen:7.2

logiC PL

Component Name Ireadjmmjum
Options
a{3:0); spaf3:0] Depth Ilﬁ— Range: 16..65536
DataWidth [4 Range: 1..1024
Memory Type
* ROM € Single Port RAM
" Dual Port RAM € SRL16-based Memory

" Simple Dual Port RAM

< Back |Pugelnf3 Next > I Generate Cancel | Help |

Figure 6-25

In the second page change nothing and click Next.

18

9 Distributed Memory Generator - B
View Documents

TP Symbol g x - -
P Distributed Memory
m i
Generator xilinx.com:ip:dist_mem_gen:7.2
Input Options =
@ Non Registered " Registered
a[3:0) 5pof20] I~ Input Clock Enable ™ Qualify WE with I_CE
Dual Port Address
& Non Registered ¢ Registered
Output Options
@ Non Registered " Registered " Both
™ Common Output CLK I™ Single Port Output CE
™ Common Output CE ™ Dual Port Output CE
Pipelining Options
Pipeline Stages: |0 >
=l
< Back | Page20of3 Next > Generate Cancel | Help |

Figure 6-26

Figure 6-27 shows the last page of the GUI. In this page, values of the ROM should be stated.
ROM values can be inserted by a Coefficients File.

g Distributed Memory Generator -0
View Documents
1P Symbol & x ..
i Pt Distributed Memory
W

Generator xilimc.com:ip:dist_mem_gen:7.2

Load COE File =

If desired the initial memory content can be set by using a COE file. This will be passed to the core as a
Memory Initialisation File (MIF).

Coefficients File : |no_coe_file_loade Browse... Show...

{30 sp0f2.0]

COE Options
Default Data : [0 Radix : [16 ~
2
Reset Options
16
™ Reset QSPO ™ Res
I™ Synchronous Reset QSPO I Synchronous Reset QDPO
& CE Overrides Sync Controls € Sync Controls Overrides CE

<Back |Page3of3 ed- | generate | cancel | heip |

Figure 6-27

Coefficients file construction can be done in MATLAB. Below MATLAB script create values
from 0 to 15 in base 10.

19

clc;clear all;close all;
fid = fopen(‘rom_values.coe', 'wt');
fprintf(fid, sprintf('memory initialization radix=10;\n\n"));
fprintf(fid, sprintf('memory _initialization_vector=\n\n'));
fori=1:16
fprintf(fid, sprintf('%d,\n',i-1));
end
fclose(fid);

PS 6-5

Click Browse button to upload generated *.coe file into ROM.

Distributed Memory Generator - oilEl
View Documents
1P Symbol & x . .
| Distributed Memory
Generator ilroccom:ip:dist_mem_gen7.2
Load COE File
¥ desired the initial memory content can be set by using a COE file. This will be passed to the core as a Memory Initialisation File (MIF).
- L
Coefficients File : |e\rom_values.coe Browse... Show...
COE Options
Default Data : 0 Radix : [10 =]
Reset Options
I~ Reset %
r r
& (sl
<Back |Page3of3 t Generate Cancel Help

Figure 6-28

“rom_values.coe” file is loaded into ROM. Uploaded values can be observed by clicking Show
button. Figure 6-29 shows the values of each index.

COE File Contents ?
Radix: 10
COE Vector: memory_initialization_vector

Index Value

0]
1 1
2 2
|3 3
4 4
|s 5
6 6
|7 7
[] 8
|9 9
10 10
|12 11
12 12
|13 13
14 14
15 15
Close Help
.
Figure 6-29

20

Step-2) Arrange the main code as given in PS 6-6.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity ROM_Usage is
Port (clk :in std logic;
data : out std_logic_vector (3 downto 0));
end ROM_Usage;

architecture Behavioral of ROM_Usage is
component ROM_core
PORT (
a : in std_logic_vector(3 downto 0);
spo : out std_logic_vector(3 downto 0)
)i

end component;

signal address : std_logic_vector(3 downto 0):="0000";
begin

ul : ROM core
port map (
a => address,
spo => data);

process(clk)
begin
if (rising_edge(clk)) then
address <=address +1;
end if;
end process;
end Behavioral,

PS 6-6

Step-3) VHDL implementation is completed. Now, simulation can be done. Use PS 6-7 for
simulation. Open a VHDL Test Bench file and named it as “ROM_Usage TB”.

21

library ieee;
use ieee.std_logic 1164.all;

entity ROM_Usage TB is
end ROM Usage TB;

architecture behavior of ROM Usage TB is

component ROM Usage

port (
clk : in std_logic;
data : out std_logic_vector(3 downto 0)
);

end component;

signal clk : std_logic :='0';
signal data : std_logic_vector(3 downto 0);
constant clk period : time := 10 ns;

begin
uut: ROM_Usage port map (
clk => clk,
data => data
);
clk process :process
begin
clk <="'0";
wait for clk period/2;
clk <="1";
wait for clk period/2;
end process;
end;

PS 6-7

Simulation scenario is constructed such that addresses of the ROM are read at each clock cycle.
Figure 6-30 shows the result of reading operation on the output port of data.

Name Value

@ dk 0
B qatal30 | 0000 oy B00r Y0010 Y0011 Y0130 Y_ 0101 Y0110 Y 01t ¥ 1000 ¥ 1bor w0 ¥ it X 1m0 ¥ 11 Y0 ¥ 1ir ¥_oo0 Yo

Figure 6-30

22

