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Chapter-6 
 

How to use IP Cores 
 

 

Intellectual property (IP) is a general name that covers  unique creations of human intellect, 

and mostly encloses copyrights, patents, and trademarks. The term IP is also valid in FPGA 

implementations ,i.e. called as IP cores. IP cores are configurable black boxes that can be added 

to main  VHDL or Verilog based designs. Most of these cores were created by Xilinx. Some 

of them are allowed to be used free of charge while some of them requires charges. Moreover, 

third party IP cores also can be developed and presented to the other users with reasonable 

charges. 

 

IP cores are classified with respect to their usage areas. Some of the classes are like below  

 

 Basic Elements 

o Accumulators 

o Counters 

o Memory Elements 

o Registers, Shifters & Pipelining 

 Communication & Networking 

o Error Correction 

o Ethernet 

o Modulation 

o Networking 

o Serial Interfaces 

o Telecommunications 

o Wireless 

 Debug & Verification 

 Digital Signal Processing 

o Building Blocks 

o Filters 

o Transforms 

o Trig Functions 

o Waveform Synthesis 

 Math Functions 

o Adders & Subctractors 

o Conversions 

o CORDIC 

o Dividers 

o Square Root 

o Trig Functions. 

 

There are many other IP cores that can be added to list. Aim of this chapter is to show how to 

use an IP core. A math function example, a clock manager example and a Read Only Memory 

(ROM) example is going to be demonstrated in deatil throughout the chapter. It’s important to 
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state that Some of the IP cores aren’t valid for some FPGA chips. Artix XC7A100T should be 

selected at beginning of each example below. 

 

Example: Design a 4-bit unsigned adder circuit by using Adder/Subtracter IP Core. Simulate 

the IP core based design on ISim with respect to below two sample calculations.  

 
𝐴3𝐴2𝐴1𝐴0

+      𝐵3𝐵2𝐵1𝐵0         

𝐶𝑜𝑢𝑡  𝑆3 𝑆2 𝑆1 𝑆0          
 

 

 

Solution: Step-1) As the first step to achive example’s task, create a new project and name it 

as IP_CORE_SAMPLE_1. Additionally, name of the main design should be “Sum_func”. 

After that, Adder/Subtracter IP Core should be added to the main implementation files as a 

component. Right click to the FPGA chip and click New Source.  

 

 
 

Figure 6-1 

 

Choose IP ( CORE Generator & Architecture Wizard) and name it as “Sum_function” . 

Click Next.  
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Figure 6-2 

 

Step-2) As seen in Figure 6-3, there are many IP Core classes to be used.  

 

 
 

Figure 6-3 

 

Adder/Subtracter core is under the class of Math Functions. Choose it and click Next. 
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Figure 6-4 

Click Finish as seen in the Figure 6-5.  

 

 
 

Figure 6-5 

 

 

Step-3) Figure 6-6 is emerged and core configuration should be done to be able use the IP core 

as planned. This Figure shows the default arrengement of the core from this graphical user 

interface (GUI). On the left hand side of the figure, block diagram of the core can be seen. 

Inputs of the core appear on the left hand side of the diagram while outputs appear on the right 

hand side of the diagram. 
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Figure 6-6 

 

Aim of the example is to build 4-bit unsigned adder. Change Input type to unsigned and input 

width to 4. Check for the Carry Out option to be able to observe carry of the summation result. 

Moreover, set zero latency for simplicity during observation. As the configuration settings are 

changed inputs and outputs change. It’s important to be aware of differences in between block 

diagrams of Figure 6-6 and Figure 6-7. 

 

 
 

Figure 6-7 
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Each IP core has its own datasheet. When Datasheet button is clicked a pdf file will be opened 

as seen in Figure 6-8. These datasheets exists for all IP cores and should be read carefully in 

order to use them effectively.  

 

 
 

Figure 6-8 

 

Click Generate button and IP core GUI will be closed. Configuration is done. If 

reconfiguration is needed double clicking to the core opens the GUI again. Adder/Subtracter 

core is added to design as seen in Figure 6-9.  

 

 
 

Figure 6-9 

 

Step-4) IP core is added to design but it isn’t tied to the main implementation of “Sum_func”.  
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Click View HDL Instantiation Template to be able to see port and component declarations 

of the generated IP core. This feature is presented by ISE in order to rapid component 

construction in main design.  

 

 
 

Figure 6-10 

 

Figure 6-11 shows the port and component declarations of the Adder/Subtracter IP core. As 

noticed, there are two 4-bit inputs and one 4 bit summation output and one bit carry output.  
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Figure 6-11 

 

Arrange main implementation file as in PS 6-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PS 6-1 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity Sum_func is 

    Port ( a : in  std_logic_vector (3 downto 0); 

               b : in  std_logic_vector (3 downto 0); 

               c : out  std_logic_vector (4 downto 0)); 

end Sum_func; 

 

architecture Behavioral of Sum_func is 

 

component Sum_function 

  port ( 

    a : in std_logic_vector(3 downto 0); 

    b : in std_logic_vector (3 downto 0); 

    c_out : out std_logic; 

    s : out std_logic_vector (3 downto 0)); 

end component; 

 

begin 

u1 : Sum_function 

  port map ( 

    a => a, 

    b => b, 

    c_out => c(4), 

    s => c(3 downto 0)); 

end Behavioral; 
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When PS 6-1 is completed IP Core – which is named as “u1-Sum_function” becomes a sub 

unit of the main implementation design of  “Sum_func”. 

 

 
 

 

Figure 6-12 

 

Step-5) Implementation is completed. Now, simulation scenario should be set. Open a VHDL 

Test Bench file and named it as “Summation_func_TB” and click Next.  
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Figure 6-13 

 

In the next window of Figure 6-14, associate test bench with main implementation file of 

“Sum_func” and click Next.  

 

 
 

Figure 6-14 

 

Arrange test bench as in PS 6-2.  
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PS 6-2 

 

Figures 6-15 and 6-16 shows two different summation operations. As a result, Adder Subtracter 

block is used successfully.  

 

 
 

Figure 6-15 

 

 

library ieee; 

use ieee.std_logic_1164.all; 

  

entity Summation_func_TB is 

end Summation_func_TB; 

  

architecture behavior of Summation_func_TB is  

    component Sum_func 

    port( 

         a : in  std_logic_vector(3 downto 0); 

         b : in  std_logic_vector(3 downto 0); 

         c : out  std_logic_vector(4 downto 0) 

        ); 

    end component; 

   --Inputs 

   signal a : std_logic_vector(3 downto 0) := (others => '0'); 

   signal b : std_logic_vector(3 downto 0) := (others => '0'); 

 --Outputs 

   signal c : std_logic_vector(4 downto 0); 

 

begin 

   uut: Sum_func port map ( 

          a => a, 

          b => b, 

          c => c 

        ); 

   stim_proc: process 

   begin   

      a <= "0001"; b <= "0010"; 

      wait for 100 ns;  

      a <= "1001"; b <= "0111"; 

      wait for 100 ns; 

   end process; 

end; 
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Figure 6-16 

 

 

Example: Increase the clock rate of the FPGA from 100 MHz to 300 MHz. Observe the result 

in ISim.   

 

Solution: Step-1) Open a new project and create a main VHDL design, name it as 

“Clock_Manager”. This design should have an input port for 100 MHz clock and a output port 

for 300 MHz clock signal. Clocking Wizard IP core is suitable for such an aim. Add a new 

source as represented in Figure 6-2 and name it as “clock_manager_core”. After typing core 

name click Next.  Click View By Name option in the window as seen in Figure 6-17 and 

choose Clocking Wizard IP core. Click Next. 

 

Clocking Wizard inherits choices of  Phase Locked Loop (PLL) and Mixed Mode Clock 

Manager (MMCM). The PLL is an analog clock management cell that can generate different 

phases of clock, does clock division and de-skew a clock. Moreover, it can generate different 

frequencies at the same time and has better jitter performance with respect to digital clock 

manager (DCM). MMCM cell is a simply PLL cell that is modified with DCM features. Since 

DCM has more precisie phase shifting ability,  analog and digital managers are used together. 

 

 
 

Figure 6-17 
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Clocking Wizard core includes six pages for configuration. GUI from Figure 6-18 to 6-21 

shows required settings for the example’s aim. Since Nexys 4 DDR board has 100 MHz 

oscillator, check the primary input clock value as seen in below Figure 6-18. Click Back and 

Next buttons to pass from page to page.  

 

 
 

Figure 6-18 

 

Arrange requested output frequency to 300 MHz liken in Figure 6-19.  

 

 
 

Figure 6-19 
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Reset and Locked features can be added to the design. Click on the check boxes to set them. 

Reset port is the input of the core while Locked is shown as output of the core in Figure 6-20. 

Locked output will be logic-1 when input and output clock signals are phase aligned. 

 

 
 

Figure 6-20 

 

Don’t change anything in page 4 and 5. Figure 6-21 shows the last page. This page shows the 

multiplier and divider settings to reach 300 MHz clock from 100 MHz. Multiplier coefficient 

is set as 10.125 while divider is set to 3.375 where  

 

 100𝑀𝐻𝑧 ∗
10.125

3.375
= 300 𝑀𝐻𝑧.  

 

 
 

Figure 6-21 
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Configuration is done. Click Generate button.  

 

Step-2) Arrange the main code as given in PS 6-3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PS 6-3 

 

Step-3) VHDL implementation is completed. Now simulation can be done. Use PS 6-4 for 

simulation. Open a VHDL Test Bench file and named it as “Clock_Manager_TB”. 

 

 

 

 

 

 

 

 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity Clock_Manager is 

    Port ( clk_100MHz,reset : in  std_logic; 

  clk_300MHz,clock_locked :out std_logic 

 ); 

end Clock_Manager; 

 

architecture Behavioral of Clock_Manager is 

component clock_manager_core 

port 

 ( 

  CLK_IN1     : in     std_logic; 

  CLK_OUT1 : out    std_logic; 

  RESET         : in     std_logic; 

  LOCKED     : out    std_logic 

 ); 

end component; 

 

begin 

 

u1: clock_manager_core 

  port map 

   (CLK_IN1 => clk_100MHz, 

    CLK_OUT1 => clk_300MHz, 

    RESET  => reset, 

    LOCKED => clock_locked); 

end Behavioral; 
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PS 6-4 

 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity Clock_Manager_TB is 

end Clock_Manager_TB; 

  

architecture behavior of Clock_Manager_TB is  

 

    component Clock_Manager 

    port( 

         clk_100MHz : in  std_logic; 

         RESET : in  std_logic; 

         clock_locked : out  std_logic; 

         clk_300MHz : out  std_logic 

        ); 

    end component; 

   --Inputs 

   signal clk_100MHz : std_logic := '0'; 

   signal RESET : std_logic := '0'; 

   --Outputs 

   signal clock_locked : std_logic; 

   signal clk_300MHz : std_logic; 

   -- Clock period definitions 

   constant clk_100MHz_period : time := 10 ns; 

begin 

  

   uut: Clock_Manager port map ( 

          clk_100MHz => clk_100MHz, 

          RESET => RESET, 

          clock_locked => clock_locked, 

          clk_300MHz => clk_300MHz); 

   clk_100MHz_process :process 

   begin 

 clk_100MHz <= '0'; 

 wait for clk_100MHz_period/2; 

 clk_100MHz <= '1'; 

 wait for clk_100MHz_period/2; 

   end process; 

   stim_proc: process 

   begin   

       reset <= '1'; 

      wait for 100 ns;  

      reset <= '0'; 

      wait;  

   end process; 

end; 
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Figure 6-22 shows the result of the simulation. Phases of 100 MHz and 300 MHz clocks 

become same when clock_locked  becomes ‘1’ at approximately at 1,3 µs.  

 

 
 

Figure 6-22 

 

Figure 6-23 demonstrates a zoomed version of the resulting waves. In this figure, period of the 

output is measured by using cursor feature of the ISim. Period of 300 MHz clock output is 

approximately 3.3 ns. This result shows that Clocking Wizard IP core is used correctly.  

 

 
 

Figure 6-23 

 

Example: Design a ROM that hold the values from 0 to 15, in 4-bit format. Read and show the 

values of ROM via simulation on ISim.  

 

Solution: Step-1) Open a new project and create a main VHDL design, name it as 

“ROM_Usage”. Add a new source as represented in Figure 6-2 and name it as “ROM_core”. 

After typing core name click Next.  Choose Distributed Memory Generator IP core as seen 

in Figure 6-24. Click Next. 
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Figure 6-24 

 

Distributed Memory Generator IP core settings consists of three pages. In the first page, 

Depth and Data Width should be set as 16 and 4, respectively. As stated in the question, 

memory type should be set as ROM.  

 

 
 

Figure 6-25 

 

In the second page change nothing and click Next. 
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Figure 6-26 

 

Figure 6-27 shows the last page of the GUI. In this page, values of the ROM should be stated. 

ROM values can be inserted by a Coefficients File.  

 

 
 

Figure 6-27 

 

Coefficients file construction can be done in MATLAB.  Below MATLAB script create values 

from 0 to 15 in base 10. 
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PS 6-5 

 

Click Browse button to upload generated *.coe file into ROM.  

 

 
 

Figure 6-28 

 

“rom_values.coe” file is loaded into ROM. Uploaded values can be observed by clicking Show 

button. Figure 6-29 shows the values of each index.  

 

 
 

Figure 6-29 

clc;clear all;close all; 

fid = fopen('rom_values.coe', 'wt'); 

fprintf(fid, sprintf('memory_initialization_radix=10;\n\n')); 

fprintf(fid, sprintf('memory_initialization_vector=\n\n')); 

for i = 1:16 

  fprintf(fid, sprintf('%d,\n',i-1)); 

end 

fclose(fid); 
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Step-2) Arrange the main code as given in PS 6-6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PS 6-6 

 

Step-3) VHDL implementation is completed. Now, simulation can be done. Use PS 6-7 for 

simulation. Open a VHDL Test Bench file and named it as “ROM_Usage_TB”.  

 

 

 

 

 

 

 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_unsigned.all; 

 

entity ROM_Usage is 

    Port ( clk   : in std_logic; 

               data : out  std_logic_vector (3 downto 0)); 

end ROM_Usage; 

 

architecture Behavioral of ROM_Usage is 

component ROM_core 

  PORT ( 

    a : in std_logic_vector(3 downto 0); 

    spo : out std_logic_vector(3 downto 0) 

  ); 

end component; 

 

signal address : std_logic_vector(3 downto 0):="0000"; 

begin 

 

  u1 : ROM_core 

  port map ( 

    a => address, 

    spo => data); 

 

  process(clk) 

  begin 

          if (rising_edge(clk)) then  

  address <=address +1; 

          end if; 

  end process; 

end Behavioral; 
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PS 6-7 

 

Simulation scenario is constructed such that addresses of the ROM are read at each clock cycle. 

Figure 6-30 shows the result of reading operation on the output port of data. 

 

 
 

Figure 6-30 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity ROM_Usage_TB is 

end ROM_Usage_TB; 

  

architecture behavior of ROM_Usage_TB is  

  

    component ROM_Usage 

    port ( 

         clk : in  std_logic; 

         data : out  std_logic_vector(3 downto 0) 

        ); 

    end component; 

   

   signal clk : std_logic := '0'; 

   signal data : std_logic_vector(3 downto 0); 

   constant clk_period : time := 10 ns; 

  

begin 

   uut: ROM_Usage port map ( 

          clk => clk, 

          data => data 

        ); 

   clk_process :process 

   begin 

 clk <= '0'; 

 wait for clk_period/2; 

 clk <= '1'; 

 wait for clk_period/2; 

   end process; 

end; 


