

1

Chapter-5

Programming the FPGA

In previous chapters, several digital circuits are implemented by using VHDL. In chapter 4,

functional tests of the implemented designs are done. In this manner, next step is to upload our

program to FPGA. FPGA coding and programming tools differs in between FPGA families of

Xilinx, Altera, Actel, etc. In this lecture, programming via Xilinx’s ISE Design Suite is going

to be demonstrated for the explanation of the process.

Figure 5-1

Figure 5-1 shows the Nexys 4 DDR programming kit and focuses on the FPGA chip. This IC

belongs to the Xilinx’s Artix 7 family with device code XC7A100T. This FPGA chip is going

to be used during rest of the chapter.

Example: VHDL code of Boolean function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥′𝑦′ + 𝑦′𝑧 is given below PS 5.1.

Open a new project. Create its bit file. Upload it to Nexys 4 DDR development kit and see the

results.

2

PS 5.1

Solution: Step-1) As the first step to achive our task, we need to open a new project. After

setting file our project file, ISE Design Suite asks for the FPGA chip family, device, package

and speed properties of the chosen FPGA. These properties can be achived simply by reading

the top side of the FPGA chip. In our case, it can be read from the Figure 5-1. Figure 5-2 shows

the overall assignment.

Figure 5-2

Step-2) After configuration, click next. An empty project with XC7A100T is created. VHDL

file and its pin assignment should be added to the project. By right clicking the FPGA chip on

the project screen open a VHDL Module and name it “f_xyz”.

library ieee;

use ieee.std_logic_1164.all;

entity f_xyz is

 port(x, y, z: in std_logic;

 f: out std_logic);

end entity;

architecture logic_flow of f_xyz is

begin

 f<= (x nor y) or (not y and z);

end architecture;

3

Figure 5-3

After typing project name click next. Enter architecture name and I/O port names as seen in

the Figure 5-4. Click next.

Figure 5-4

Step-3) Our function is implemented. Now we have to tie FPGA pins to our variables

𝑥, 𝑦 , 𝑧 , 𝑓 . Nexys 4 DDR development kit has basic electronic components to realize input

signal possibilities and observe results. Among these components, we are going to use switches

as inputs and an LED as output. As a result, we are going to use three switches (SW0, SW1,

SW2) and an LED (LED0). Pin information about Nexys 4 DDR FPGA board can be found

from the internet easily. After choosing our peripherals from Nexys 4 DDR FPGA board

reference manual, now we can define them in our ISE project.

4

Figure 5-5

Step-4) By right clicking the FPGA chip on the project screen open a “Implementation

Constraints File” and name it “f_xyz_pins”. Click Next.

Step-5) An empty file with the extension of “*.ucf”. Connect your one bit I/O variables to SW0,

SW1, SW2 and LED0 as shown below in Figure 5-6. It is also important to state that

“f_xyz_pins.ucf” file is in the sub directory of “f_xyz.vhd” file on the Hierarchy window of

the design. It means constraints file is created correctly.

Figure 5-6

Step-6) We are ready to generate our “*.bit” file. Select your main file “f_xyz.vhd” and double

click to Generate Programming File button as seen in Figure 5-7. By clicking this button

5

translating, mapping and routing stages start to work. If editor find no mistakes then green

check mark emerges (Figure 5-8) and it means our “*.bit” file is generated inside the project

file.

Figure 5-7 Figure 5-8

Step-7) In this step, turn is to upload our bit file into the FPGA. Connect your FPGA

development kit to your computer. If it is the first time that your board is connected to your

computer, be sure its USB driver is installed. Generally, operating systems install it

automatically. Open Manage Configuration Project (iMPACT) from the Configure Target

Device menu as given in Figure 5-9.

6

Figure 5-9

Step-8) An empty project screen will open as it seen in Figure 5-10. Double click Boundary

Scan to add connected FPGA devices to configuration project.

Figure 5-10

After Boundary Scan right side of the project window becomes ready to add FPGA chip.

7

Figure 5-11

Step-9) Right click on the new-opened area and choose Add Xilinx Device (Figure 5-11). When

clicked, window in the Figure 5-12 appears.

Figure 5-12

8

Choose the bit file that we created previously during the Generate Programming File process

and click Open. When it’s opened FPGA chip is found; check its name and you can see that

it’s XC7A100T as we set before.

Figure 5-13

Step-10) Right click to the green FPGA chip and Program it (Figure 5-13). When it’s done

the indicator “Program Succeeded” should be seen, otherwise check your USB driver status.

Figure 5-14

9

Step-11) This is the last step of the process. We successfully upload our code to FPGA. Now

we should check the results whether they are true or not. In this case, we need to look at truth

table of the given function at first. Truth table of the 𝑓(𝑥, 𝑦, 𝑧) given below in Table 5-1.

Table 5-1

Figure 5-15 shows the result of one possible combination of inputs, 𝑥 =′ 1′, 𝑦 =′ 0′, 𝑧 =′ 1′.
As it’s expected the result equals 𝑓 equals logic ‘1’ such that, LED is on. It’s also important to

state that sliding switches in + y direction means input is logic ‘1’, sliding switches in –y

direction makes any input logic ‘0’.

Figure 5-15

10

Example: Implement the 2-to-1 multiplexer which is depicted in Figure 5-16. Inputs and

output are should be two bit wide. Only the select bit of the multiplexer is one bit. Create “*.bit”

file, upload it to Nexys 4 DDR development kit and observe the results.

Figure 5-16

Solution: Below program segment PS 5.2 is the VHDL solution of this example.

PS 5.2

Follow the steps (1-3) that are shown in the previous example. At this time, constraints file a

bit different since, some of our inputs and our single output are two bits wide. Constraints

should be written as shown in Figure 5-17.

library ieee;

use ieee.std_logic_1164.all;

entity multiplexer_2x1 is

 port(I0, I1: in std_logic_vector (1 downto 0);

 S0: in std_logic;

 F: out std_logic_vector(1 downto 0));

end entity;

architecture logic_flow of multiplexer_2x1 is

begin

 f<=x when s0='0' else

 y;

end architecture;

11

Figure 5-17

Constraints file is set, so step 4 and 5 are completed. When rest of the steps (6-11) are done,

bit file of the multiplexer is created and uploaded into the development kit. In Figure 5-18,

select bit of the multiplexer is set to ‘0’ so, “01” is observed at the output which is equal to 𝐼0.

Figure 5-18

Figure 5-19 shows the results if 𝑆0 becomes logic ‘1’. In this time, since 𝐼1 is set as “11” output

𝐹 equals “11”. As a result, we covered all the states of the truth table.

12

Figure 5-19

Exercise: Design a simple 3-to-8 Decoder whose structure and truth table are given below in

Figure 5-20. Create “*.bit” file, upload it to Nexys 4 DDR development kit and observe the

results.

Figure 5-20

