

1

Chapter-7

Clocking

This chapter will be focus on one of the most important component of a sequential process or

design i.e. clocking. Clocking is an important issue most of the FPGA implementations.

Essentially, using clock in a design means that your system is subject of time. Simply, clock is

a square wave so it has a period and frequency. In general, speed of the design depends of its

clock frequency besides other factors like complexity and phase delays in between blocks of

the overall design. Clock frequency of a microcontroller or a FPGA gives a clue about its

performance at first glance. For instance, nowadays computers work with up to 4 GHz clock

frequencies while FPGA works with maximum 700 MHz. However, it won’t be true to

compare a microcontroller (in this case computer CPU) with a FPGA in terms of their clock

frequencies. Since, FPGA has a capacity of doing calculations in a parallel manner it can over

perform a CPU which has much higher clock frequency.

Nexys 4 DDR programming kit has a crystal that supports 100 MHz clock to FPGA. If anyone

wants to increase the clock frequency of any FPGA, a phase lock loop (PLL) based module

should be used. Every FPGA chip has this module and it can be activated through calling it to

design via using component feature of the VHDL. This topic will be explained in forthcoming

chapters.

A FPGA uses clock pulses to accomplish sequential processes. Rising or falling edge of the

clock is used to begin a process and continue an ongoing process. Figure 7-1 shows the rising

and falling edge of a clock pulse.

Figure 7-1

Example: Design a 3-bit binary up counter. Counter value should be increased by one in every

rising edge of the clock pulse. Test your code in ISIM simulator. Use 100 MHz clock during

simulation.

Solution: Step-1) As the first step to achive our task, we need to open a new project. After

setting project file, ISE Design Suite asks for the FPGA chip family, device, package and speed

properties of the chosen FPGA. Set the FPGA chip of Nexys 4 DDR programming kit. As

mentioned before, these properties can be achived simply by reading the top side of the FPGA

chip.

Step-2) After configuration, click next. An empty project with XC7A100T is created. Open a

new VHDL module and name it as “three_bit_up_counter”. Copy below program segment PS

7.1.

2

PS 7.1

Step-3) Our implementation is done. Next step is to do simulation of this counter. Follow the

steps that are explained in previous chapters. Name your test bench as

“three_bit_up_counter_TB”. At the end, your project window and test bench code should be

look like in Figure 7-2.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity three_bit_up_counter is

 port(clk_in: in std_logic;

 counter : out std_logic_vector(2 downto 0));

end entity;

architecture logic_flow of three_bit_up_counter is

begin

process (clk_in)

variable temp: integer range 0 to 7;

begin

if (rising_edge(clk_in)) then

 temp := temp+1;

end if;

counter <=conv_std_logic_vector(temp,3);

end process;

end architecture;

3

Figure 7-2

Step-4) Simulation result of 3-bit up counter is given below in Figure 7-3. Check your results.

Figure 7-3

As noticed from the Figure 7-4, counter value is increased every rising edge of the clock signal.

In PS 7.1, there is one item (“clk_in”) in the sensitivity list of the process so “rising_edge”

keyword understands that command is valid for the input “clk_in”. However, what happens

there are two or more items in the sensitivity list. PS 7.2 shows a different VHDL coding to get

rid of this confusion.

4

PS 7.2

PS 7.2 also gives same result with Figure 7-2. This issues should be taken into consideration

when there more than one item in the sensitivity list of a process.

Exercise: Design a 3-bit binary up counter. Counter value should be increased in every falling

edge of the clock pulse. Test your code in ISIM simulator. Use 100 MHz clock during

simulation.

Outputs of the PS 7.1 and PS 7.2 can be observed from ISIM simulator easily. However, when

observation on our programming kit a problem emerges. Assume that we define 3 LEDs for

the output “count”. If we run our VHDL design, we will see that all the LEDs are on

permanently like there is no counter. This is because of human eye can’t perceive more than

20 Hz where our clock frequency is 100 MHz. In order to observe counter result we can divide

the clock frequency by adding a clock divider process to our VHDL design.

Example: Design a clock divider. Assume that you have 100 MHz clock. Clock divider output

should be set to 50 MHz. Test your code in ISIM simulator. Program your Nexys 4 DDR

programming kit. Original clock and divided clock should be observed from an oscilloscope.

Solution: Step-1) As the first step to achive our task, we need to open a new project. After

setting project file, ISE Design Suite asks for the FPGA chip family, device, package and speed

properties of the chosen FPGA. Set the FPGA chip of Nexys 4 DDR programming kit.

Step-2) After configuration, click next. An empty project with XC7A100T is created. Open a

new VHDL module and name it as “simple_clock_divider”. Copy below program segment PS

7.3.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity three_bit_up_counter is

 port(clk_in: in std_logic;

 counter : out std_logic_vector(2 downto 0));

end entity;

architecture logic_flow of three_bit_up_counter is

begin

process (clk_in)

variable temp: integer range 0 to 7;

begin

if (clk_in’event and clk_in=’1’) then

 temp := temp+1;

end if;

counter <=conv_std_logic_vector(temp,3);

end process;

end architecture;

5

 PS 7.3

Step-3) Clock divider is implemented. Open a VHDL Test Bench and name it as

“simple_clock_divider_TB”. At the end, your project window and test bench code should be

look like in Figure 7-4.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity simple_clock_divider is

 port(clk_in: in std_logic;

 clk_out_original, clk_out_divided : out std_logic);

end entity;

architecture logic_flow of simple_clock_divider is

signal count: natural range 0 to 1;

signal temp_clk_out: std_logic:=’0’;

begin

clk_out_original <= clk_in;

process(clk_in)

 begin

 if (rising_edge(clk_in)) then

 count <= count + 1;

 if(count=0) then

 temp_clk_out<=not temp_clk_out;

 count<=0;

 end if;

 end if;

 end process;

 clk_out_divided <= temp_clk_out;

end architecture;

6

Figure 7-4

Step-4) Simulation result of clock divider is given below in Figure 7-5. Compare your results.

Figure 7-5

Step-5) In this step, we need to choose pins that can be connected to an oscilloscope. Designers

of the Nexys 4 DDR programming kit put some connecters to achieve such an operation. These

are named Pmod ports. Figure 7-6 shows the Pmod ports.

7

Figure 7-6

Each PMOD port has 12 pins including 2 VCC pins, 2 GND pins and 8 I/O pins. Figure 7-7

shows the orientation of one Pmod port.

Figure 7-7

Below table 7-1 shows the pin diagram of all Pmod ports that are available in Nexys 4 DDR

programming kit.

Table 7-1

8

In this example JA1 and JA2 are chosen to assign variables of clk_out_original and

clk_out_divided, respectively.

Step-6) Pins are chosen. Turn is to open an implementation constraints file and assign our

variables to these pins. Open an implementation constraints file and name at as

“simple_clock_divider_pins”. By doing this an empty “simple_clock_divider_pins.ucf” file is

created. Assign pins as seen in Figure 7-8.

Figure 7-8

Step-7) After completing pin assignment generate programming file. We are ready to generate

our “*.bit” file. If editor find no mistakes then green check mark emerges and it means our

“*.bit” file is generated inside the project file.

Step-8) Open iMPACT and upload your bit file into FPGA. Cable conntections and results can

be seen on Figure 7-9.

9

Figure 7-9

As you probably know, a square wave is made up of many sine waves, the fundamental

frequency and an infinite number of odd harmonics decreasing in amplitude which give it it's

shape. So if you have a square wave at 10MHz, you will have a harmonic at 30MHz at 1/3 the

level of the fundamental, one at 50MHz at 1/5 the level of the fundamental and so on. The more

harmonics present the more it will look like a square wave. Any square wave can be turned

into a sine wave using a low pass filter to remove all harmonics apart from the fundamental, so

unless your oscilloscope has the bandwidth to display at least the 3rd and 5th harmonic you

will not see something that much resembles a square wave.

Exercise: Design a clock divider that divides original clock to 1000. Test your code in ISIM

simulator. Use 100 MHz clock during simulation.

Example: Implement a 3 bit binary up counter. Counter value should be incremented by 1 at

each second. Assign LEDs for the counter values. Upload your bit file to your Nexys 4 DDR

programming kit.

Solution: Step-1) As the first step to achive our task, we need to open a new project. After

setting project file, ISE Design Suite asks for the FPGA chip family, device, package and speed

properties of the chosen FPGA. Set the FPGA chip of Nexys 4 DDR programming kit.

Step-2) After configuration, click next. An empty project with XC7A100T is created. Open a

new VHDL module and name it as “three_bit_counter”. Copy below program segment PS 7.4.

10

PS 7.4

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity three_bit_up_counter is

 port(clk_in: in std_logic;

 counter : out std_logic_vector(2 downto 0));

end entity;

architecture logic_flow of three_bit_up_counter is

signal count: natural range 0 to 100000000;

signal divided_clk: std_logic;

begin

clock_divider_pr:process(clk_in)

 begin

 if (rising_edge(clk_in)) then

 count <= count + 1;

 if(count=100000000) then

 divided_clk <=not divided_clk;

 count<=0;

 end if;

 end if;

 end process;

counter_pr:process (divided_clk)

variable temp: integer range 0 to 7;

begin

if (divided_clk’event and divided_clk =’1’) then

 temp := temp+1;

end if;

counter <=conv_std_logic_vector(temp,3);

end process;

end architecture;

11

Above VHDL code has two processes, one of them is for dividing clock and the other one

stands for the counter operation. Counter process, counter_pp, takes the divided_clk as clock

which is set to 1 Hz.

Step-3) In this step, we need to assign pins to our variables. Implementation constraints file

which is named as “three_bit_counter_pins.ucf” and project view can be seen in below figure

of Figure 7-10.

Figure 7-10

Step-4) Generate programming file and upload your bit file in your FPGA programming kit. 3-

binary bit up counter starts from 000 to 111, then becomes 000 and counts to 111 again and

continues like this in a infinite loop.

Exercise: Design a binary up counter that counts from 0 to 255. Counter frequency should be

5 Hz. Test your code in ISIM simulator. Program your Nexys 4 DDR programming kit and see

the results.

Example: Implement a BCD counter from 0 to 9 for a seven segment display. Arrange counter

frequency that a human eye can perceive. Assign seven segment pins for the counter values.

Upload resulting bit file to Nexys 4 DDR programming kit.

12

PS 7.5

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity one_digit_ss_counter is

 port(clk_in: in std_logic;

 AN : out std_logic;

 SSD: out std_logic_vector(6 downto 0));

end entity;

architecture logic_flow of one_digit_ss_counter is

signal count: natural range 0 to 100000000;

signal clk_1Hz: std_logic;

signal digit: natural range 0 to 9;

begin

clock_divider_pr:process(clk_in)

 begin

 if (rising_edge(clk_in)) then

 count <= count + 1;

 if(count=100000000) then

 clk_1Hz <=not clk_1Hz;

 count<=0;

 end if;

 end if;

 end process;

 AN <= '0';

process(clk_1Hz)

 begin

 if(rising_edge(clk_1Hz)) then

 if(digit=9) then

 digit<=0;

 else

 digit<= digit+1;

 end if;

 end if;

 end process;

 SSD<="1111110" when digit =0 else

 "0110000" when digit =1 else

 "1101101" when digit =2 else

 "1111001" when digit =3 else

 "0110011" when digit =4 else

 "1011011" when digit =5 else

 "1011111" when digit =6 else

 "1110000" when digit =7 else

 "1111111" when digit =8 else

 "1111011";

end architecture;

